Abstract:
A method for monitoring idling mode connections between a base station and idling subscriber units that are powered on, but not actively sending data, is provided. The method includes making available a plurality of orthogonal subchannels within at least one Code Division Multiple Access (CDMA) radio frequency (RF) channel. A shared orthogonal subchannel is assigned to at least two different idling subscriber units, but utilizing different time slots of the shared orthogonal subchannels. For each idling subscriber unit assigned the shared orthogonal subchannel, a respective heartbeat signal is sent within its assigned time slot at a data rate that is low enough to maintain bit synchronization with the base station. The respective heartbeat signals are tracked within the assigned time slots by selecting an assigned time slot within the shared orthogonal subchannel, retrieving a previous tracking of a respective heartbeat signal for an idling subscriber unit associated with the assigned time slot, determining a current tracking of the respective heartbeat signal for the idling subscriber unit associated with the assigned time slot, and updating the tracking of the idling subscriber unit associated with the assigned time slot based upon its current and previous trackings.
Abstract:
A technique for allowing a first and second group of users to share access to a communication channel such as a wireless radio channel is disclosed. The first group of users can be a group of legacy users such as those that use digital CDMA cellular telephone equipment based on the IS-95 standard. The second group of users can be a group of web surfers that code their transmissions using one of multiple formats. The first group of users can share one modulation structure such as, on a reverse link, using unique phase offsets of a common pseudorandom noise (PN) code. The second group of users can share another modulation structure, but in a manner that is consistent and compatible with the users of the first group. Specifically, the users of the second group may all use the same PN code and code phase offset. Each channel used by the second group of users can be uniquely identified by a corresponding unique orthogonal code.
Abstract:
An adaptive antenna used in a receive only mode with a separate omnidirectional transmit antenna. The arrangement is especially effective for small, handheld wireless devices. The transmit antenna maybe integrated with the receive array by utilizing a horizontally polarized transmit and vertically polarized receiver ray. In other embodiments, the transmit antenna may be physically separate and not integrated with the receive array. In either case there is separate receive and transmit signal port as an interface to radio transceiver equipment. The use of an adaptive antenna in the receive only direction has the potential to increase forward links capacity to levels equal to or greater than reverse link capacity. This allows for a significant increase in the overall number of users that may be active at the same time in a wireless system.
Abstract:
In an illustrative embodiment of the present invention, a first channel is allocated for transmitting sporadically generated messages from multiple field units to a base station. The first channel is preferably divided into time slots in which a field unit transmits an access request message to the base station for establishing a communication link. In response to an access request message, feedback information is provided from the base station to multiple field units indicating whether a collision was detected on the first channel for a message transmitted in a previous time slot. In an instance when a collision is detected, the field unit will re-transmit an access request message at a previous power level setting based on a random back off time. If no collision is detected and the base station fails to transmit an acknowledgment message from the base station to the access requesting field unit, the power output level of the field unit is increased for successive message transmissions until the message is received.
Abstract:
An antenna apparatus which can increase capacity in a cellular communication system. The antenna operates in conjunction with a mobile subscriber unit and provides a plurality of antenna elements, each coupled to a respective programmable phase shifter. The phase of each antenna element is programmed for optimum reception during, for example, an idle mode which receives a pilot signal. The antenna array creates a beamformer for signals to be transmitted from the mobile subscriber unit, and a directional receiving array to more optimally detect and receive signals transmitted from the base station. By directionally receiving and transmitting signals, multipath fading is greatly reduced as well as intercell interference. Various techniques for determining the proper phase of each antenna element are accommodated.
Abstract:
A method and apparatus for creating non-interfering signals to be simultaneously transmitted over a common frequency in a wireless communication systems, such as a CDMA system, without the use of orthogonal codes and/or orthogonal code generation techniques. The system provides a pseudorandom combiner that receives the information signal and a pseudorandom code sequence and combines the information signal with the pseudorandom code sequence to produce the first combined signal. A channel sequence combiner receives the first combined signal and a repetitive maximum length channel sequence and combines these signals to produce a second combined signal. A selector receives the first combined signal, the second combined signal and a repetitive strobe signal, and selects either the first combined signal or the second combined signal to produce a modulated signal based upon a value of the repetitive strobe signal. The channel sequence values are non-orthogonal repetitive series of N bits, and the strobe signal is N+1 bits.
Abstract:
Generating first pilot symbols and second pilot symbols is disclosed. A frame, to send in an uplink transmission, may have a first portion and a second portion. The first portion may include the first pilot symbols and data symbols. The second portion may include the second pilot symbols without data symbols.
Abstract:
Method and apparatus for base stations and subscriber units allows soft handoff of a CDMA reverse link utilizing an orthogonal channel structure. Subscriber units transmit an orthogonally coded signal over a reverse link to the base stations. A given base station provides timing control of the timing offset of the reverse link signal. Based on at least one criterion, an alignment controller determines that the given base station should hand off timing control to another base station, and a soft handoff process ensues. In response to a command or message for soft handoff of the subscriber unit from the given base station to another base station, the subscriber unit makes a coarse timing adjustment to the timing of the coded signal. The subscriber unit may make fine timing adjustments based on feedback from the base station controlling timing. Multiple base stations may provide power control feedback to the subscriber unit.
Abstract:
A protocol for optimizing the use of coded transmissions such as over wireless links. In this technique, interframes are split into segments selected to be an optimum size according to transmission characteristics of the radio channel. The inverse process is applied at the receiver. Using this scheme, segments containing erroneous data may be resent.
Abstract:
A intelligent backhaul radio is disclosed, which can operate by zero division duplexing for use in PTP or PMP topologies, providing for significant spectrum usage benefits among other benefits. Specific system architectures and structures to enable active cancellation of multiple transmit signals at multiple receivers within a MIMO radio are disclosed. Further disclosed aspects include the adaptive optimization of cancellation parameters or coefficients.