Abstract:
This disclosure describes optical systems for projecting an irregular or complex pattern onto a region of space (e.g., a two-dimensional or three-dimensional object or scene). A respective light beam is emitted from each of a plurality of light sources. The emitted light beams collectively are diffracted in accordance with a plurality of different first grating parameters to produce a plurality of first diffracted light beams. The first diffracted light beams then collectively are diffracted in accordance with one or more second grating parameters.
Abstract:
Then optical device comprises a first member (P) and a second member (O) and, arranged between said first and second members, a third member (S) referred to as spacer. The spacer (S) comprises —one or more portions referred to as distancing portions (Sd) in which the spacer has a vertical extension referred to as maximum vertical extension; —at least two separate portions referred to as open portions (4) in which no material of the spacer is present; and —one or more portions referred to as structured portions (Sb) in which material of the spacer is present and in which the spacer has a vertical extension smaller than said maximum vertical extension. Such optical devices can be used in or as multi-aperture cameras.
Abstract:
A lens module includes a substrate, a first array of passive optical elements on the substrate, and a second array of passive optical elements separate from the first array. The optical elements of the first array and the optical elements of the second array form multiple optical channels, in which at least one optical channel is a catadioptric optical channel including a reflective optical element and a refractive optical element. The reflective optical element is arranged to reflect light toward the refractive optical element, each optical channel has a corresponding field-of-view, and the lens module has an overall field of view defined by the range of angles subtended by the field-of-view of the plurality of optical channels.
Abstract:
Disclosed is an arrangement for detecting first light (L1) and second light (L2), with the first light (L1) and second light (L2) having no wavelength in common. The arrangement includes a first effective detector area (D1) and a second effective detector area (D2). The first effective detector area (D1) is exposed to the first light (L1) and/or second light (L2) different from the first light (L1) and/or second light (L2) to which the second effective detector area (D2) is exposed when the arrangement is exposed to spatially uniformly distributed first light (L1) and second light (L2). The difference between the first light (L1) and/or second light (L2) to which said first detector area (D1) and second detector area (D2) are exposed to can be a difference in intensity and/or difference in an angle of incidence relative to the arrangement.
Abstract:
The optical module (1) comprises—a first member (O) having a first face (F1) which is substantially planar;—a second member (P) having a second face (F2) facing the first face (F1), which is substantially planar and is aligned substantially parallel to the first face;—a third member (S) comprised in the first member (O) or comprised in the second member (P) or distinct from and located between these, which comprises an opening (4);—a mirror element (31′; 31′″) present on the second face (F2); and—an active optical component (26) present on the second face (F2) and electrically connected to the second member (P); wherein at least one of the first and second members comprises one or more transparent portions (t) through which light can pass. The method for manufacturing the optical module (1) comprises the steps of a) providing a first wafer; b) providing a second wafer on which the mirror elements (31′. . . ) are present; c) providing a third wafer, wherein the third wafer is comprised in the first wafer or is comprised in the second wafer or is distinct from these, and wherein the third wafer comprises openings (4); e) forming a wafer stack comprising these wafers; wherein at least one of the first wafer and the second wafer comprises transparent portions (t) through which light can pass.
Abstract:
This disclosure describes various modules that can provide ultra-precise and stable packaging for an optoelectronic device such as a light emitter or light detector. The modules include vertical alignment features that can be machined, as needed, during fabrication of the modules, to establish a precise distance between the optoelectronic device and an optical element or optical assembly disposed over the optoelectronic device.
Abstract:
Image sensor modules include primary high-resolution imagers and secondary imagers. For example, an image sensor module may include a semiconductor chip including photosensitive regions defining, respectively, a primary camera and a secondary camera. The image sensor module may include an optical assembly that does not substantially obstruct the field-of-view of the secondary camera. Some modules include multiple secondary cameras that have a field-of-view at least as large as the field-of-view of the primary camera. Various features are described to facilitate acquisition of signals that can be used to calculate depth information.
Abstract:
The present disclosure describes optical radiation sensors and detection techniques that facilitate assigning a specific wavelength to a measured photocurrent. The techniques can be used to determine the spectral emission characteristics of a radiation source. In one aspect, a method of determining spectral emission characteristics of incident radiation includes sensing at least some of the incident radiation using a light detector having first and second photosensitive regions whose optical responsivity characteristics differ from one another. The method further includes identifying a wavelength of the incident radiation based on a ratio of a photocurrent from the first region and a photocurrent from the second region.
Abstract:
This disclosure describes optoelectronic devices that include an event-driven photo-array and methods for using the same. The methods include capturing output signals over a particular illumination time via a change-detection circuit. In some instances, a threshold intensity change can trigger the change-detection circuit. In some instances, an active illumination from an illumination module may produce the threshold intensity change. Output signals may be used to generate distance data. In some instances, the output signals may be substantially free from noise due to background light.
Abstract:
The optical apparatus comprises a semiconductor substrate and at least one optics substrate. The semiconductor substrate comprises a first active region establishing a first image sensor, said semiconductor substrate further comprising an additional active region, different from said first active region. The additional active region establishes or is part of an additional sensor which is not an image sensor. And the at least one optics substrate comprises for said first image sensor at least one lens element for imaging light impinging on the optical apparatus from a front side onto the first image sensor. Preferably, at least two or rather at least three image sensors are provided, such that a computational camera can be realized. The additional sensor may comprise, e.g., an ambient light sensor and/or a proximity sensor.