Abstract:
An optical communication system includes two optical modems (12) and (14) which are disposed at either end of an optical fiber data link (10). The optical modems (12) and (14) communicate through LEDs (16) and (18), respectively, with the fiber data link (10). Each of the optical modems (12) and (14) on start-up are peerless and do not operate in either a master or a slave configuration. A ping-pong transmission format is utilized with transmitted packets of data. When one of the optical modems (12) or (14) detects a transmitted packet from the other, it locks up to the transmitted packet with a phase lock loop and takes on slave status. This slave status is transmitted back to the fiber data link (10) in another transmitted packet. The transmitted packet from the slave device is then adjusted time relative to the machine cycle of the slave device until the packet is received by the other optical modem. Once the other optical modem receives the transmitted packet from the slave optical modem, it recognizes this fact and takes on a master status. This master status is transmitted back to the slave optical modem and adjustment of the relative position of the transmitted packet therein is terminated and the start-up procedure is terminated.
Abstract:
A calibration circuit for a linear channel of an optical modem includes circuitry interconnected to the linear channel for causing the linear channel to oscillate. Circuitry is interconnected to the output of the linear channel for monitoring the bandwidth of the linear channel during oscillation and for generating output pulses. The output pulses are counted and are utilized for generating an adjustment signal applied to the linear channel for adjusting the bandwidth of the linear channel.
Abstract:
An oversampling analog-to-digital modulator includes an analog loop filter which has a first integrator stage which is a single-ended integrator. The second, third, and fourth integrator stages are fully-differential integrators. The first integrator provides the required thermal noise characteristics of the loop filter with only one feedback capacitor which is external to the integrated circuit chip, while the fully-differential integrator stages provide improved suppression of charge injection transients.
Abstract:
A phase equalization system for a digital-to-analog converter (DAC) includes a digital portion (10) having an interpolation section (14) for receiving a digital input and increasing the sampling frequency thereof for input to a delta-sigma modulator (16). A summing junction (24) is disposed between the interpolation circuit (14) and the delta-sigma modudlator (16) to allow an offset voltage to be summed therewith. This provides for D.C. offset, this offset being controlled by a calibration control (40). The output of the digital section (10) is input in an analog section (12), which has a one-bit DAC 21) that is input to an analog filter (22) for converting and filtering the one-bit digital stream output by the delta-sigma modulator (16). The interpolation circuit (14) includes a three stage interpolation filter comprising a first stage (50), a second stage (52) and a third stage (54). The second stage (52) is comprised of a finite impulse response filter (FIR) that has a nonlinear phase response. The nonlinear phase response of the interpolation filter (52) compensates for the phase deviation of the analog filter (22) from a linear phase response. Therefore, the composite phase provided by the combination of the phase equalization in the digital section (10) and the phase nonlinearity in the analog section (12) will result in a linear overall phase relationship for the DAC.
Abstract:
A method and circuitry for time-sharing a digitally-programmable capacitive element, particularly in conjunction with a switched-capacitor filter circuit. The method includes: selecting a first capacitance value for the capacitive element; initializing the charge on the capacitive element; connecting the capacitive element to first preselected nodes of an electronic circuit; disconnecting the capacitive element from the first preselected nodes of after any charge transfer has substantially been completed; changing the capacitance of the capacitive element to a new desired value; initializing the charge on the capacitive element; and then connecting the capacitive element to other preselected nodes of the electronic circuit. A biquad switched-capacitor filter circuit is configured to use such method in its operation.
Abstract:
An electronic sample-and-hold circuit (10, 24) of the type which includes a correction network is designed to eliminate a primary signal feedback loop. A correction capacitor, (C.sub.C), a coupling capacitor (C.sub.CC), and a primary holding capacitor (C.sub.H) are connected in series, respectively, between two ground points. The common node of the coupling capacitor and the holding capacitor is a held signal node (12). The common node of the coupling capacitor (C.sub.CC) and the correction capacitor (C.sub.C) is a correction voltage node (20). The circuit output is from the signal node (12) through a buffer (14) and a stage selecting switch (S.sub.F). The output is fed back to an operational amplifier (18, 26) which has its output connected to the correction node (20) through a correction sampling switch (S.sub.C). A switched (S.sub.A) feedback loop connects the output of the amplifier 18 to the inverting input port. The primary signal input (IN) is to the signal node (12) through a primary sampling switch (S.sub.S). The noninverting input (+) of the amplifier (26) is connected to the output of a buffer (22). The input of the buffer (22) receives the input signal through an input switch (S.sub.I) and is also connected to an input capacitor (C.sub.I), which has its other side grounded.Also disclosed is a circuit (24) in which the operational amplifier (26) is a less complex, inverting amplifier provided with a switched (S.sub.A) local bypass loop.
Abstract:
An offset correction circuit removes DC offset from an analog audio output signal by comparing transitions of digital audio values to which the analog output signal is related to the output of a monitor that monitors the analog output signal. The monitor may be a zero-crossing detector and the transitions of the digital signal that are compared may be transitions of the most-significant bit (MSB) of the digital audio values. A filtering algorithm or filter circuit may be used to average a result of the comparison of the transitions, so that the offset is slowly and accurately removed. A chopped or autozero comparator may be used to further reduce error in the offset determination.
Abstract:
A charge pump power supply for an audio power amplifier integrated circuit has an operating mode selected according to an indication of operating environment and/or a process position of the integrated circuit. The operating mode selects the output voltage provided by the charge pump and may also select efficiency by selecting a frequency of operation of the charge pump and/or the effective size of a switching transistor bank. The selection is made in conformity with an indication of a process position of the integrated circuit and/or an indication of an environment of the integrated circuit, such as temperature, power supply voltage and/or load impedance values, and generally also in conformity with a volume (gain) setting, or a detected signal level, so that internal power consumption of the amplifier and charge pump is reduced when a high signal level is not being reproduced at the audio power stage.
Abstract:
A delta-sigma analog-to-digital converter (ADC) circuit improves performance by reducing the amount of noise and other error sampled by the reference switching circuit. The reference switching network is operated intermittently only when the charge on an input integrator exceeds a threshold, thereby preventing the input integrator from saturating, while avoiding needlessly injecting reference noise. The input to the ADC may be a current injected directly into a summing node of the integrator, or may be a voltage supplied through another switching network.
Abstract:
Techniques are disclosed for permitting low power operation of a signal processing circuit, such as a mixed signal processing circuit, by operating devices of the digital signal processing side at an energy-delay minimum. To permit this to occur, the negative logic supply rail of the digital signal processing circuit is operated at a negative potential. This negative potential is generated using a charge pump on an integrated circuit chip which can be also used to create a negative substrate potential. A positive logic supply rail can be generated using a DC to DC converter or voltage regulator. The potential of the positive logic supply rail can be negative, as long at it is more positive than the potential of the negative logic supply rail.