Abstract:
An audio switching power amplifier having an output pulse voltage selected in conformity with an indication of the output signal amplitude provides lower electromagnetic interference (EMI) in class-D amplifier implementations, in particular, in inductor-less designs. The output pulse voltage may be selected by providing multiple switching circuits, such as half or fully bridge switches, with each switching circuit connected to a different power supply. One of the switching circuits is activated by the switching controller, while the others are disabled, providing selection of the output pulse voltage. Selection of a lower pulse voltage, when the maximum voltage is not required, reduces the generated EMI. The switching frequency of the class-D amplifier may also be controlled in conformity with the output signal amplitude, so that at higher output levels a lower switching rate is selected, reducing the generated EMI.
Abstract:
The electrical circuitry for a multiplier system includes a counter for determining proximity to sampling operation, and a switch to select between symmetrical noise invariant operation and a low-power mode of operation. A noise invariant circuit disables row skip operation in a multi-row multiplier, to enable analog sampling. Disabling of the row skip operation is accomplished at a time which is several digital cycles preceding the time of analog sampling. Power saving multiplier row skippage resumes after analog sampling is completed.
Abstract:
An autoranging analog to digital conversion system is provided. The system may include a digitally programmable preamplifier for amplifying a difference between an analog input and an estimate of the analog input. The preamplifier may be coupled to an analog to digital converter for converting the preamplifier output to a digital signal. The system may also include digital domain predictor or estimation logic for determining an optimum gain and analog input estimate for a given analog input. Multiple signal input channels may be coupled to the analog to digital conversion system. The autoranging estimations may be performed on a sample by sample basis or a channel by channel basis. The conversion system may also include the use of a backup conversion path for use when the main conversion path overranges. The backup conversion path may utilize a dedicated backup converter. The backup conversion path may alternatively utilize the estimation converter to generate backup conversions or may utilize the main converter to generate backup conversions.
Abstract:
A data conversion device is provided for storing digital data in a DAT (332) at a 16-bit word length and then recovering the data at a 24-bit word length with an overall reduction in truncation noise that would be inherently associated with data at the 16-bit word length. This is facilitated by noise shaping the data at the 16-bit word length prior to storage in the DAT (332) with a noise-shaping filter (324). This results in truncation noise in the lower portion of the frequency band being shifted to the higher portion of the band. When the data is recovered, it is converted to a 24-bit word length and then processed through a bandpass filter to filter out the higher frequency noise to yield a signal that has a maximum noise equal to or less than that in the lower portion of the band stored in the DAT (332). Since the truncation noise was shifted from the lower band to the upper band, this is a lower noise level than that inherently associated with the 16-bit word length.
Abstract:
A system and method is provided for providing optimal input and output impedances at a telecommunications interface. Input and output impedances can be adjusted manually, or the optimal impedance can be sensed and provided for automatically at the selected interface.
Abstract:
An analog modulator is provided having seven switched-capacitor integrators (62)-(74) disposed in a leap-frog filter configuration with a plurality of feedback taps (76)-(88) provided from the output to each of the integrators (62)-(74). These are summed in a summation junction (90), the output thereof input to a quantizing circuit (92) for input back to a summation junction alter a D to A circuit (60) for summation with the analog input signal and then input to the first integrator (62). The first feedback structures (98)-(102) are provided for connection between the output of the last of the integrated structures (74) and the input of the preceding one thereof such that the feedback structure (98) is connected across integrators (64) and integrator (66), feedback structure (100) connected between integrators (68)-(70) and integrator (102) connected against integrators (72) and (74). Leap-frog feedback elements are connected across integrators (70) and (72) and leap-frog feedback filter (104) is connected across integrator (66) and (68).
Abstract:
A non-volatile memo includes the reference cells programmed to opposite logic states whose outputs are combined and then equally divided to provide a reference signal to a sense amplifier which is one half of the sum of the signals from a high conductivity data cell and a low conductivity data cell. The non-volatile memory also includes a bias voltage generator which uses a high conductivity non-volatile reference cell for a reference, and which produces a bias voltage which is coupled to current limiting transistors at the inputs of the sense amplifier so that the current into the sense amplifier is limited and therefore limits the power used by the non-volatile memory.
Abstract:
The feedback sample-and-hold stages of a transversal filter bank include a primary sample-and-hold branch and a secondary sample-and-hold branch for correction of offset voltage in the primary branch which results from switching charge feedthrough of its sampling switch. A pair of N-channel buffer transistors, one an enhancement type and one a depletion type, are so connected to the branches that power supply noise is attenuated. Additionally, the parasitic capacitance of the enhancement transistor acts as a coupling capacitor for the correction function.
Abstract:
In at least one embodiment, an electronic system includes an amplifier having an on-chip charge pump to provide a gate boost voltage to boost a gate voltage of at least one on-chip field effect transistor (FET) of an output stage of an amplifier. In at least one embodiment, the gate boost voltage boosts the gate voltage higher than the supply voltage rail to increase an overdrive voltage of the on-chip FET. In at least one embodiment, the gate boost voltage boosts the DC bias of an input signal and, thus, generation of gate boost voltage by the on-chip charge pump is signal-independent, i.e. independent of the input signal. Increasing the overdrive voltage increases the efficiency of the amplifier by decreasing the difference between the maximum swing of the output voltage and the voltage supply rails of the at least one on-chip FET relative to conventional designs.
Abstract:
A delta-sigma analog-to-digital converter (ADC) circuit improves performance by reducing the amount of noise and other error sampled by the reference switching circuit. The reference switching network is operated intermittently only when the charge on an input integrator exceeds a threshold, thereby preventing the input integrator from saturating, while avoiding needlessly injecting reference noise. The input to the ADC may be a current injected directly into a summing node of the integrator, or may be a voltage supplied through another switching network.