摘要:
The invention relates to a receiver circuit having an optical receiving device, a plurality of amplifiers that are connected to the receiving device, and circuit means or a control circuit for individually activating and deactivating the individual amplifiers. In this case, the amplifiers each differ from one another in at least one parameter such as gain, and only one amplifier is activated at a given point in time, while the other amplifiers are deactivated. The invention makes it possible to match the receiver circuit to widely varying transmission rates.
摘要:
A method is disclosed for optimizing optical channel signal demultiplexing in a monolithic receiver photonic integrated circuit (RXPIC) chip by providing an integrated channel signal demultiplexing with multiple waveguide input verniers provided to an WDM signal demultiplexer. The RxPIC chip may optionally include an integrated amplifier in at least some of the waveguide input verniers. The RxPIC chip may be comprised of, in monolithic form, a plurality of optional semiconductor optical amplifiers (SOAs) at the input of the chip to receive a WDM signal from an optical link which is provided along a plurality of waveguide input verniers to an integrated optical demultiplexer, such as, but not limited to, an arrayed waveguide grating (AWG), as a WDM signal demultiplexer. Thus, optical outputs from the respective semiconductor laser amplifiers are provided as vernier inputs to the optical demultiplexer forming a plurality of input verniers at the input to the optical demultiplexer. One of the vernier inputs to the chip is selected for operation in the RxPIC chip that corresponds to an optimum performance in matching a WDM channel signal wavelength grid of the received WDM signal to a wavelength grid of the on-chip optical demultiplexer.
摘要:
An optical receiver adapted to apply multiple-sampling processing to an optical duobinary signal received over a transmission link in an optical communication system. In one embodiment, the receiver has an optical-to-electrical signal converter coupled to a decoder adapted to process an electrical signal generated by the converter to generate a bit sequence corresponding to the optical signal. To generate a bit value, the decoder first obtains two or more bit estimate values by sampling the electrical signal within a corresponding signaling interval two or more times. The decoder then applies a logical function to the bit estimate values, which produces the corresponding bit value for the bit sequence. Advantageously, embodiments of the present invention improve overall back-to-back (i.e., source-to-destination) system performance, e.g., by reducing the number of decoding errors associated with timing jitter and/or spontaneous beat noise in the received optical signal.
摘要:
Precision measurement of optical signal power is provided. In one implementation, a Wilson current mirror senses current through an avalanche photodiode (APD) that has been exposed to the optical signal. The output of this APD may also be used to recover data. By incorporating a high voltage transistor as the buffer, the Wilson current mirror is able to operate in series with the APD at a high bias level.
摘要:
This disclosure is generally concerned with devices for determining photocurrent levels. One example of such a device is an optoelectronic device that includes a photodetector. The photodetector is configured to receive an optical signal and generate a corresponding electrical signal. The electrical signal is received by a pre-amplifier circuit which then converts the received electrical signal to a differential output. Finally, a post-amplifier circuit in communication with the first stage circuit is configured to derive an optical signal strength of the optical signal based upon the differential output received from the pre-amplifier circuit.
摘要:
This disclosure is generally concerned with devices for determining photocurrent levels. One example of such a device is an optoelectronic transceiver that includes a laser and a photodetector. The photodetector is configured to receive an optical signal and generate a corresponding electrical signal. The electrical signal is received by a first stage circuit which then converts the received electrical signal to a differential output. Finally, a second stage circuit in communication with the first stage circuit is configured to derive an optical signal strength of the optical signal based upon the differential output received from the first stage circuit.
摘要:
A digital signal receiving apparatus is disclosed. The digital signal receiving apparatus includes a main signal discriminating unit configured to discriminate a main signal of a received signal, a monitor signal discriminating unit configured to discriminate a monitor signal of the received signal, an error monitoring unit configured to monitor a discriminating error of the monitor signal discriminating unit, and a discriminating point control unit configured to control the discriminating points of the main signal discriminating unit and the monitor signal discriminating unit. The discriminating point control unit monitors an output of the error monitoring unit, moves the discriminating point of the monitor signal discriminating unit in the amplitude directions and the phase directions such that a discriminating error occurs, detects a center of discriminating points where errors are generated, and sets the detected center of the discriminating points as the discriminating point of the main signal discriminating unit.
摘要:
Various methods and apparatuses are described in which an array of optical gain mediums capable of lasing are contained in a single integral unit. The array may contain four or more optical gain mediums capable of lasing. Each optical gain medium capable of lasing supplies a separate optical signal containing a band of wavelengths different than the other optical gain mediums capable of lasing in the array to a first multiplexer/demultiplexer. A connection for an output fiber exists to route an optical signal to and from a passive optical network.
摘要:
Optical receiver circuit having a first, illuminable reception device for converting an optical signal into an analog electrical signal; a first preamplifier for amplifying the output signal of the first reception device; a postamplifier having a first input and a second input, the first input being supplied with the signal of the first reception device (said signal having been amplified in the first preamplifier) and the second input being supplied with a reference signal; an offset compensation circuit, which regulates the difference between the mean value of the electrical signal at the first input of the postamplifier and the reference signal at the second input of the postamplifier to a constant value; and having a signal detection device, which detects a control signal of the offset compensation circuit and carries out signal detection in a manner dependent on this signal. The invention provides signal detection in an optical receiver circuit, which manages with few additional components.
摘要:
An optical receiving device. The optical receiving device has a photodiode, transimpedance amplifier, and a feedback component. The photodiode has a first terminal coupled to a voltage source and a second terminal. When detecting an optical signal, the photodiode generates a current signal output from the second terminal. The transimpedance amplifier converts the current signal to a voltage signal and outputs the voltage. The feedback component is coupled between the first terminal and a input terminal of the transimpedance amplifier. The feedback component feeds a first voltage-changing signal, occurring in the input terminal of the transimdepance amplifier with the current signal, to the first terminal.