Abstract:
A method and apparatus for forming an anode electrode structure are provided. The deposition apparatus comprises a first spool chamber capable of housing a storage spool operable to provide the flexible substrate. The deposition apparatus further comprises a first deposition chamber arranged downstream from the first spool chamber. The first deposition chamber comprises a first coating drum capable of guiding the flexible substrate past a first plurality of deposition units capable of depositing lithium metal on the flexible substrate. The deposition apparatus further comprises a second deposition chamber arranged downstream from the first deposition chamber. The second deposition chamber comprises a second coating drum capable for guiding the flexible substrate past a second deposition unit comprising an evaporation crucible capable of depositing a ceramic protective film on the lithium metal film.
Abstract:
A method and apparatus for direct liquid injection (DLI) of chemical precursors into a processing chamber is provided. The DLI system includes a liquid precursor source vaporization system, which vaporizes liquid stably and efficiently. In one implementation, the DLI system is a closed loop integrated system which combines, an injection valve (IV) along with a Liquid Flow Meter (LFM), an ampoule assembly as a source of pressurized precursor, an inert push gas to pressurize the precursor in the ampoule assembly, a temperature controller to maintain a targeted temperature regime, leak detection and controlled carrier gas flow to gas heater.
Abstract:
The present invention relates generally to electrochemical energy storage devices such as Li-ion batteries, and more particularly to a method of providing uniform ceramic coatings with controlled thicknesses for separators in such storage devices. Some embodiments of the invention utilize a layer by layer coating of nano/micro-sized particles dispersed in a solvent, which can be aqueous or non-aqueous. Other embodiments of the invention utilize a dry process such as PVD for depositing a ceramic film on a porous polyolefin separator. According to certain aspects of the invention, advantages of this approach include the ability to achieve a denser more uniform film with better controlled thickness with less waste and higher yield than current ceramic coating technology. An advantage of a ceramic coated separator is increased safety of cells.
Abstract:
Embodiments of the invention generally relate to solid state battery structures, such as Li-ion batteries, methods of fabrication and tools for fabricating the batteries. One or more electrodes and the separator may each be cast using a green tape approach wherein a mixture of active material, conductive additive, polymer binder and/or solid electrolyte are molded or extruded in a roll to roll or segmented sheet/disk process to make green tape, green disks or green sheets. A method of fabricating a solid state battery may include: preparing and/or providing a green sheet of positive electrode material; preparing and/or providing a green sheet of separator material; laminating together the green sheet of positive electrode material and the green sheet of separator material to form a laminated green stack; and sintering the laminated green stack to form a sintered stack comprising a positive electrode and a separator.
Abstract:
Implementations of the present disclosure generally relate to separators, high performance electrochemical devices, such as, batteries and capacitors, including the aforementioned separators, and methods for fabricating the same. In one implementation, a separator for a battery is provided. The separator comprises a substrate capable of conducting ions and at least one dielectric layer capable of conducting ions. The at least one dielectric layer at least partially covers the substrate and has a thickness of 1 nanometer to 2,000 nanometers.
Abstract:
Implementations described herein generally relate to metal electrodes, more specifically, lithium-containing anodes, high performance electrochemical devices, such as secondary batteries, including the aforementioned lithium-containing electrodes, and methods for fabricating the same. In one implementation, a rechargeable battery is provided. The rechargeable battery comprises a cathode film including a lithium transition metal oxide, a separator film coupled to the cathode film and capable of conducting ions, a solid electrolyte interphase film coupled to the separator, wherein the solid electrolyte interphase film is a lithium fluoride film or a lithium carbonate film, a lithium metal film coupled to the solid electrolyte interphase film and an anode current collector coupled to the lithium metal film.
Abstract:
A lithium ion battery may comprise a positive electrode, a negative electrode and a separator coated with a thin film of lithium metal, the thickness of the lithium being less than or equal to a thickness sufficient to compensate for the irreversible loss of lithium during the first cycle of the battery. Furthermore, there may be a ceramic layer on the separator between the separator and the lithium metal thin film. Yet furthermore, there may be a barrier layer between the ceramic layer and the lithium metal thin film, wherein the barrier layer blocks Li dendrite formation. Furthermore, the separator may have pores which may be filled with one or more of a lithium ion-conducting polymer, a binder soluble in a liquid electrolyte, and a lithium ion-conducting ceramic material. Methods of, and equipment for, fabricating such battery separators and also for fabricating components for lithium metal based batteries are described.
Abstract:
Implementations of the present invention relate generally to high-capacity energy storage devices and methods and apparatus for fabricating high-capacity energy storage devices. In one implementation, a method for forming a multi-layer cathode structure is provided. The method comprises providing a conductive substrate, depositing a first slurry mixture comprising a cathodically active material to form a first cathode material layer over the conductive substrate, depositing a second slurry mixture comprising a cathodically active material to form a second cathode material layer over the first cathode material layer, and compressing the as-deposited first cathode material layer and the second cathode material layer to achieve a desired porosity.
Abstract:
A method and apparatus for fabricating electrodes used in energy storage devices are provided. In some implementations a surface of the electrode is activated for (a) a pre-treatment process to remove loosely held particles from the electrode surface; (b) a pre-treatment process to activate the surface of the electrode material for improved bonding or wetting for subsequently deposited materials; (c) a post-treatment of the pre-lithiation layer to improve subsequent bonding with additionally deposited layer, for example, passivation layers; and/or (d) a post-treatment of the pre-lithiation layer to improve/accelerate absorption of the lithium into the underlying electrode material.
Abstract:
In one implementation, an integrated processing tool for the deposition and processing of lithium metal in energy storage devices. The integrated processing tool may be a web tool. The integrated processing tool may comprises a reel-to-reel system for transporting a continuous sheet of material through the following chambers: a chamber for depositing a thin film of lithium metal on the continuous sheet of material and a chamber for depositing a protective film on the surface of the thin film of lithium metal. The chamber for depositing a thin film of lithium metal may include a PVD system, such as an electron-beam evaporator, a thin film transfer system, or a slot-die deposition system. The chamber for depositing a protective film on the lithium metal film may include a chamber for depositing an interleaf film or a chamber for depositing a lithium-ion conducting polymer on the lithium metal film.