Abstract:
According to an embodiment, an adder includes first and second wave computing units and a threshold wave computing unit. Each of the first and second wave computing units includes a pair of first input sections, a first wave transmission medium having a continuous film including a magnetic body connected to the first input sections, and a first wave detector outputting a result of computation by spin waves induced in the first wave transmission medium by the signals corresponding to the two bit values. The threshold wave computing unit includes a plurality of third input sections, a third wave transmission medium having a continuous film including a magnetic body connected to the third input sections, and a third wave detector a result of computation by spin waves induced in the third wave transmission medium.
Abstract:
According to one embodiment, a magnetic recording element includes a stacked body including a first stacked unit and a second stacked unit. The first stacked unit includes a first ferromagnetic layer, a second ferromagnetic layer and a first nonmagnetic layer. Magnetization of the first ferromagnetic layer is substantially fixed in a first direction being perpendicular to a first ferromagnetic layer surface. The second stacked unit includes a third ferromagnetic layer, a fourth ferromagnetic layer and a second nonmagnetic layer. Magnetization of the fourth ferromagnetic layer is substantially fixed in a second direction being perpendicular to a fourth ferromagnetic layer surface. The first direction is opposite to the second direction.
Abstract:
A magnetic memory is provided with a memory cell. The memory cell includes a magnetic recording element, an interconnection to generate a radio-frequency current-induced magnetic field and a ground line. The magnetic recording element is provided with a first magnetic layer whose magnetization direction is substantially fixed, a magnetic recording layer whose magnetization direction is substantially reversed by spin-polarized electrons passing through the magnetic recording layer and a first nonmagnetic layer provided between the first magnetic layer and the magnetic recording layer. The interconnection is provided above the magnetic recording element to generate a radio-frequency current-induced magnetic field acting in a direction substantially perpendicular to a magnetization easy axis of the magnetic recording layer. The ground line is provided on a side opposite to the magnetic recording element with respect to the interconnection.
Abstract:
A magnetic recording element includes a multilayer having a surface and a pair of electrodes. The multilayer has a first magnetic fixed layer whose magnetization is substantially fixed in a first direction substantially perpendicular to the surface. The multilayer also has a second magnetic fixed layer whose magnetization is substantially fixed in a second direction opposite to the first direction substantially perpendicular to the surface. A third magnetic layer is provided between the first and second magnetic layers. The direction of magnetization of the third ferromagnetic layer is variable. A first intermediate layer is provided between the first and the third magnetic layers. A second intermediate layer is provided between the second and the third magnetic layers. The pair of electrodes is capable of supplying an electric current flowing in a direction substantially perpendicular to the surface to the multilayer. The sectional area taken parallel to the surface at a thickness midpoint of the first magnetic layer is larger than that of the second magnetic layer.
Abstract:
An example magnetic recording device includes a laminated body. The laminated body includes a first ferromagnetic layer with a magnetization substantially fixed in a first direction; a second ferromagnetic layer with a variable magnetization direction; a first nonmagnetic layer disposed between the first ferromagnetic layer and the second ferromagnetic layer; a third ferromagnetic layer with a variable magnetization direction; and a fourth ferromagnetic layer with a magnetization substantially fixed in a second direction, wherein at least one of the first and second direction is generally perpendicular to the film plane. The magnetization direction of the second ferromagnetic layer is determinable in response to the orientation of a current, by passing the current in a direction generally perpendicular to the film plane of the layers of the laminated body and the magnetization of the third ferromagnetic layer is able to undergo precession by passing the current.
Abstract:
According to one embodiment, a magnetic element includes first and second conductive layers, an intermediate interconnection, and first and second stacked units. The intermediate interconnection is provided between the conductive layers. The first stacked unit is provided between the first conductive layer and the interconnection, and includes first and second ferromagnetic layer and a first nonmagnetic layer provided between the first and second ferromagnetic layers. The second stacked unit is provided between the second conductive layer and the interconnection, and includes third and fourth ferromagnetic layers and a second nonmagnetic layer provided between the third and fourth ferromagnetic layers. A magnetization direction of the second ferromagnetic layer is determined by causing a spin-polarized electron and a magnetic field to act on the second ferromagnetic layer.
Abstract:
According to one embodiment, a magnetic recording element includes a stacked body. The stacked body includes a first and a second stacked unit. The first stacked unit includes first and second ferromagnetic layers and a first nonmagnetic layer. The first nonmagnetic layer is provided between the first and second ferromagnetic layers. The second stacked unit is stacked with the first stacked unit and includes third and fourth ferromagnetic layers and a second nonmagnetic layer. The fourth ferromagnetic layer is stacked with the third ferromagnetic layer. The second nonmagnetic layer is provided between the third and fourth ferromagnetic layers. An outer edge of the fourth ferromagnetic layer includes a portion outside an outer edge of the first stacked unit in a plane. A magnetization direction of the second ferromagnetic layer is determined by causing a spin-polarized electron and a rotating magnetic field to act on the second ferromagnetic layer.
Abstract:
According to one embodiment, a method of manufacturing a multilayer film, the method includes forming a first layer, forming a second layer on the first layer, and transcribing a crystal information of one of the first and second layers to the other one of the first and second layers by executing a GCIB-irradiation to the second layer.
Abstract:
According to an embodiment, an adder includes first and second wave computing units and a threshold wave computing unit. Each of the first and second wave computing units includes a pair of first input sections, a first wave transmission medium having a continuous film including a magnetic body connected to the first input sections, and a first wave detector outputting a result of computation by spin waves induced in the first wave transmission medium by the signals corresponding to the two bit values. The threshold wave computing unit includes a plurality of third input sections, a third wave transmission medium having a continuous film including a magnetic body connected to the third input sections, and a third wave detector a result of computation by spin waves induced in the third wave transmission medium.
Abstract:
According to one embodiment, a magnetic memory element includes a stacked body including first and second stacked units stacked with each other. The first stacked unit includes first and second ferromagnetic layers and a first nonmagnetic layer provided therebetween. The second stacked unit includes third and fourth ferromagnetic layers and a second nonmagnetic layer provided therebetween. Magnetization of the second and third ferromagnetic layers are variable. Magnetizations of the first and fourth ferromagnetic layers are fixed in a direction perpendicular to the layer surfaces. A cross-sectional area of the third ferromagnetic layer is smaller than a cross-sectional area of the first stacked unit when cut along a plane perpendicular to the stacking direction.