Abstract:
An electronic device may be provided with wireless circuitry. The wireless circuitry may include antennas. The antennas may include phased antenna arrays for handling millimeter wave signals. Antennas may be located in antenna signal paths. The antenna signal paths may include adjustable components such as adjustable filters, adjustable gain amplifiers, and adjustable phase shifters. Circuitry may be incorporated into an electronic device to facilitate wireless self-testing operations. Wireless self-testing may involve use of one antenna to transmit an over-the-air antenna test signal that is received by another antenna. The circuitry that facilitates the wireless self-testing operations may include couplers, adjustable switches for temporarily shorting antenna signal paths together, mixers for mixing down radio-frequency signals to allow digitization with analog-to-digital converters, and other circuitry for supporting self-testing operations.
Abstract:
An electronic device may be provided with wireless circuitry. Control circuitry may be used to adjust the wireless circuitry. The wireless circuitry may include antennas that are tuned, adjustable impedance matching circuitry, antenna port selection circuitry, and adjustable transceiver circuitry. Wireless circuit adjustments may be made by ascertaining a current usage scenario for the electronic device based on sensor data, information from cellular base station equipment or other external equipment, signal-to-noise ratio information or other signal information, antenna impedance measurements, and other information about the operation of the electronic device.
Abstract:
An electronic device may have components mounted in a housing. The device may include wireless transceiver circuitry and antenna structures. A display may be mounted in the housing. The display may have a cover layer having an inner surface with a recess. The recess may run along a peripheral edge of the cover layer. An antenna structure such as an inverted-F antenna resonating element may be formed from a metal trace on a dielectric antenna carrier. The resonating element may be mounted in the recess without adhesive. Conductive vias may pass through the dielectric carrier. Metal members with dimples may be soldered to a flexible printed circuit and may be used to ground metal traces on the carrier and the flexible printed circuit to the housing when the carrier is attached to the housing with fasteners.
Abstract:
An electronic device may be provided with wireless circuitry. The wireless circuitry may include one or more antennas. An antenna may have an antenna feed that is coupled to a radio-frequency transceiver with a transmission line. An impedance matching circuit may be coupled to the antenna feed to match the impedance of the transmission line and the antenna. The impedance matching circuit and tunable circuitry in the antenna may be formed using integrated circuits. Each integrated circuit may include switching circuitry that is used in switching components such as inductors and capacitors into use. Sensors such as temperature sensors, current and voltage sensors, power sensors, and impedance sensors may be integrated into the integrated circuits. Each integrated circuit may store settings for the switching circuitry and may include communications and control circuitry for communicating with external circuits and processing sensor data.
Abstract:
Custom antenna structures may be used to improve antenna performance and to compensate for manufacturing variations in electronic device antennas. An electronic device antenna may include an antenna tuning element and conductive structures formed from portions of a peripheral conductive housing member and other conductive antenna structures. The antenna tuning element may be connected across a gap in the peripheral conductive housing member. The custom antenna structures may be used to couple the antenna tuning element to a fixed custom location on the peripheral conductive housing member to help satisfy design criteria and to compensate for manufacturing variations in the conductive antenna structures that could potentially lead to undesired variations in antenna performance. Custom antenna structures may include springs and custom paths on dielectric supports.
Abstract:
An electronic device may be provided with wireless circuitry. An application processor may generate wireless data that is to be transmitted using the wireless circuitry and may process wireless data that has been received using the wireless circuitry. The wireless circuitry may include multiple baseband processors, multiple associated radios, and front-end module and antenna circuitry. Sensors may be used to provide the application processor with sensor data. During operation, the application processor and the baseband processors may be used to transmit and receive wireless communications traffic. A multiradio controller integrated circuit that does not transmit or receive the wireless communications traffic may be used in controlling the wireless circuitry based on impedance measurements, sensor data, and other information.
Abstract:
Electronic devices may be provided that include radio-frequency transceiver circuitry and antennas. An antenna may be formed from an antenna resonating element and an antenna ground. The antenna resonating element may have a shorter portion that resonates at higher communications band frequencies and a longer portion that resonates at lower communications band frequencies. The resonating element may be formed from a peripheral conductive electronic device housing structure that is separated from the antenna ground by an opening. A parasitic monopole antenna resonating element or parasitic loop antenna resonating element may be located in the opening. Antenna tuning in the higher communications band may be implemented using an adjustable inductor in the parasitic element. Antenna tuning in the lower communications band may be implemented using an adjustable inductor that couples the antenna resonating element to the antenna ground.
Abstract:
An electronic device may be provided with shared antenna structures that can be used to form both a near-field-communications antenna such as a loop antenna and a non-near-field communications antenna such as an inverted-F antenna. The antenna structures may include conductive structures such as metal traces on printed circuits or other dielectric substrates, internal metal housing structures, or other conductive electronic device housing structures. A main resonating element arm may be separated from an antenna ground by an opening. A non-near-field communications antenna return path and antenna feed path may span the opening. A balun may have first and second electromagnetically coupled inductors. The second inductor may have terminals coupled across differential signal terminals in a near-field communications transceiver. The first inductor may form part of the near-field communications loop antenna.
Abstract:
An electronic device may be provided with an antenna. The antenna may have an antenna resonating element and an antenna ground. An adjustable inductor may be coupled between the antenna resonating element and the antenna ground. An antenna feed may have a positive feed terminal coupled to the antenna resonating element and a ground antenna feed coupled to the antenna ground. The adjustable inductor may have first and second inductors coupled to respective first and second ports of a switch. The switch may have a third port coupled to the antenna ground. A capacitor may have a first terminal coupled to ground and a second terminal coupled to the first inductor at the first port of the switch. An inductor may be coupled between the antenna resonating element and antenna ground at a location between the adjustable inductor and the antenna feed.
Abstract:
Electronic devices may be provided that include radio-frequency transceiver circuitry and antennas. An antenna may be formed from an antenna resonating element and an antenna ground. The antenna resonating element may have a shorter portion that resonates at higher communications band frequencies and a longer portion that resonates at lower communications band frequencies. An extended portion of the antenna ground may form an inverted-F antenna resonating element portion of the antenna resonating element. The antenna resonating element may be formed from a peripheral conductive electronic device housing structure that is separated from the antenna ground by an opening. A first antenna feed may be coupled between the peripheral conductive electronic device housing structures and the antenna ground across the opening. A second antenna feed may be coupled to the inverted-F antenna resonating element portion of the antenna resonating element.