Abstract:
Disclosed are a method and an apparatus for transmitting channel state information (CSI) of a user equipment, which is allocated a plurality of serving cells, in a wireless communication system. The method comprises: receiving setting information for setting groups comprising at least one serving cell from the plurality of serving cells, and transmitting periodic CSI with respect to a group that is selected according to priority between the groups, when the periodic CSI with respect to each of the groups is set to be transmitted from the same subframe, wherein the periodic CSI with respect to each of at least two serving cells are transmitted together when the at least two serving cells are included in the group that is selected.
Abstract:
A method of receiving a downlink signal by a user equipment in a wireless communication system; the user equipment therefore; a method of transmitting a downlink signal by a base station in a wireless communication system; and the base station therefore are discussed. The method of receiving a downlink signal by a user equipment in a wireless communication system according to one embodiment includes receiving downlink scheduling information, the downlink scheduling information including a frequency block indicator and resource allocation information for one or more transport blocks (TBs); and receiving the downlink signal including the one or more TBs via a first frequency block among multiple frequency blocks. The first frequency block is indicated by the frequency block indicator among the multiple frequency blocks. Each of the multiple frequency blocks does not overlap with other multiple frequency blocks, and has a respective hybrid automatic repeat request (HARQ) process.
Abstract:
A method for encoding a transport block in a wireless communication system, and a wireless apparatus therefore are discussed. The method according to one embodiment includes determining, at a transmitting device, a size of the transport block based on a size of an allocated resource, a number of layers, and modulation and coding scheme (MCS) for the transport block, wherein the size of the transport block is determined from among a plurality of predetermined sizes, wherein the plurality of the predetermined sizes include 305976 bits, 324336 bits, and 391656 bits when the transport block is mapped to four-layer spatial multiplexing and when 256 Quadrature amplitude modulation (QAM) is used for the transport block; and attaching at the transmitting device, a first cyclic redundancy check (CRC) code to the transport block to configure a first CRC-attached transport block.
Abstract:
Provided are a method for a terminal transmitting uplink control information (UCI) through a physical uplink control channel (PUCCH) in a wireless communication system, and a terminal using the method. A transmission power to be applied to the uplink control channel is determined on the basis of a value subordinate to a PUCCH format, and at least one type of UCI is transmitted from the physical uplink control channel by using the transmission power that is determined, wherein when the PUCCH format is PUCCH format 3, and the at least one type of UCI includes acknowledgement/negative-acknowledgement (ACK/NACK) and periodic channel state information (CSI), the value subordinate to the PUCCH format is determined on the basis of the number of bits of the ACK/NACK and the number of bits of the periodic CSI.
Abstract:
A method of transmitting a control signal using efficient multiplexing is disclosed. The present invention includes the steps of multiplexing a plurality of 1-bit control signals within a prescribed time-frequency domain by code division multiple access (CDMA) and transmitting the multiplexed control signals, wherein a plurality of the 1-hit control signals include a plurality of the 1-bit control signals for a specific transmitting side. Accordingly, reliability on 1-bit control signal transmission can be enhanced.
Abstract:
A method is described for transmitting a control signal in a wireless communication system. A wireless communication system supporting multiple antennas, transmits, by a user equipment (UE), a control signal on an uplink control channel at a subframe i. Furthermore, an uplink transmit power PPUCCH(i) for the uplink control channel at the subframe i is determined based on a mathematical equation. Additionally, the mathematical equation includes a min function and uses parameters including PCMAX(i), P0_PUCCH, ΔF_PUCCH(F), g(i), PL, Δ(M) and PL where PCMAX(i) is a configured UE transmit power in subframe i, P0_PUCCH is a parameter composed based on provisions by a higher layer, ΔF_PUCCH(F) is a parameter provided by the higher layer, PL is a downlink pathloss estimate calculated in the UE, and g(i) is a value relating to a UE specific value.
Abstract:
A method for a base station to receive an uplink transmission from a user equipment. The method according to one embodiment includes transmitting, to the user equipment, Radio Resource Control (RRC) configuration information for channel status report, the RRC configuration information including information for periodically receiving channel status report from the user equipment; transmitting, to the user equipment, Layer 2 (L2) control information indicating states of the plurality of downlink component carriers, each of the plurality of downlink component carriers being indicated as one of an active state and a non-active state; and performing a procedure for periodically receiving channel status report for a corresponding downlink component carrier from the user equipment in use of the RRC configuration information. According to whether the corresponding downlink component carrier is in the active state or the non-active state at a time for receiving a channel status report, channel status information or no channel status information is received for the corresponding downlink component carrier from the user equipment at the time, respectively.
Abstract:
A method of transmitting a sounding reference signal (SRS) by a user equipment in a wireless communication system, a non-transitory computer readable medium on which a program for executing the method is recorded, and a user equipment for performing the method are discussed. The method according to one embodiment includes receiving a physical downlink control channel (PDCCH) including a carrier indicator field (CIF) and an SRS field via a first component carrier (CC) among a plurality of CCs including the first CC and one or more second CCs, the CIF indicating a specific CC and the SRS field indicating whether the user equipment has to transmit the SRS; transmitting the SRS on an uplink subframe; and receiving a first medium access control (MAC) information. If a bit for the specific CC in a bitmap has been disabled, the specific CC and SRS transmission on the specific CC are deactivated.
Abstract:
A method for transmitting an uplink signal by a communication apparatus in a wireless communication system is discussed. The method includes multiplexing control information with at least one of a plurality of data blocks to generate a bit sequence; and transmitting the uplink signal including the bit sequence. When the control information includes a first type of control data, the control information is multiplexed with all of the plurality of data blocks. When the control information includes a second type of control data, the control information is multiplexed only with a specific data block among the plurality of data blocks. The first type of control data includes acknowledgement/negative acknowledgement (ACK/NACK) information, and the second type of control data includes channel quality information.
Abstract:
A method, performed by a user equipment, is described for uplink transmission in a wireless communication system. A first time alignment (TA) to a first cell belonging to a first timing advance group (TAG) is performed. A second TA to a second cell belonging to a second TAG is performed. A determination is made as to whether to transmit or drop a sounding reference signal (SRS) on a subframe. The SRS is determined to be dropped based on whether the first and second TAGs are configured, whether at least one symbol of the subframe is used to transmit the SRS toward the second cell of the second TAG and also used to transmit a physical uplink shared channel (PUSCH) toward the first cell of the first TAG, and whether a total uplink transmission power exceeds a maximum value.