Abstract:
The present invention relates to a microvalve for controlling a fluid flow in a microchannel, to a microfluidic circuit using the microvalve, and to a manufacturing method thereof. The microvalve has a first electrode located on a portion of the microchannel, a second electrode over the microchannel and substantially aligned with the first electrode forming a membrane with substantially no resilience. In function, upon application of an electric force on the first and second electrodes, the second electrode draws nearer the first electrode, thus obstructing the microchannel. The microfluidic circuit comprises multiple microchannels and at least one microvalve affixed to one of the multiple microchannels, wherein the at least one microvalve is adapted to indirectly actuate a flexible valve adapted to regulate a flow of fluid in another one of a multiplicity of microchannels.
Abstract:
A zirconium- and alumina-containing silicate glass suitable for use as a frit with refractory materials such as alumina is disclosed, the silicate glass comprising a glass composition in mole percent (mol %) of:2
Abstract:
A three dimensional microfluidic device for passive sorting and storing of liquid plugs is provided with homogeneous surfaces from the exposure of a photopolymer through binary masking motifs, i.e., arrays of opaque pixels on a transparency mask. The device includes sub-millimeter three-dimensional relief microstructures to aid in the channeling of fluids. The microstructures have topographically modulated features smaller than 100 micrometers.
Abstract:
This invention relates to a systems and methods of controlling the flow of a fluid in a capillary or microfluidic channel. A first pair of electrodes can influence the wetting of a fluid front at a relatively hydrophobic surface in the channel. A second pair of electrodes can electrolytically generate a bubble that can stop fluid flow when it contacts the hydrophobic surface. Flow of a fluid in a channel can be stopped on contact with the hydrophobic surface and restarted when an electrostatic field reduces the contact angle of the fluid at the hydrophobic surface. The electrostatic field can be removed and the fluid stopped again when an electrolytically generated bubble contacts the hydrophobic surface to reestablish the blocking contact angle of the fluid, gas and surface.
Abstract:
A method of fabricating an elastomeric structure, comprising: forming a first elastomeric layer on top of a first micromachined mold, the first micromachined mold having a first raised protrusion which forms a first recess extending along a bottom surface of the first elastomeric layer; forming a second elastomeric layer on top of a second micromachined mold, the second micromachined mold having a second raised protrusion which forms a second recess extending along a bottom surface of the second elastomeric layer; bonding the bottom surface of the second elastomeric layer onto a top surface of the first elastomeric layer such that a control channel forms in the second recess between the first and second elastomeric layers; and positioning the first elastomeric layer on top of a planar substrate such that a flow channel forms in the first recess between the first elastomeric layer and the planar substrate.
Abstract:
A micro-fluidic oscillator comprises a main body and a cover body for covering the main body. An oscillation chamber is disposed on the main body to provide an oscillation space for fluid. A sudden-expansion micro-nozzle is connected with one end of the oscillation chamber, and an outlet passage is connected with the other end of the oscillation chamber. Two fluid-separating bodies are located at the connection positions of the outlet passage and the oscillation chamber, respectively. Two feedback channels are located outside two attachment walls. The sudden-expansion micro-nozzle is used to break the viscous shear stress between fluid and the walls and to generate unstable flow and oscillation. Moreover, the two feedback channels have different lengths, inside diameters and alternate outlet positions to further enhance the oscillation of fluid.
Abstract:
A first liquid fed into a first flow passage 6 of a fluid handling apparatus travels to the open end thereof on the side of a second flow passage 7 due to capillarity. The movement of the first liquid is uniformed on the cross section of the flow passage by the function of a capillarity promoting portion 220 or 230 of the bottom 21 of the first flow passage 6. Then, the movement of a second liquid fed into the second flow passage 7 is uniformed on the cross section of the flow passage by the function of the capillarity promoting portion 220 or 230 of the bottom 21 of the second flow passage 7. Thus, the movement of the front end of the second liquid is substantially uniformed to surely extrude gas from the second flow passage 7 to the outside via a fourth flow passage 10.
Abstract:
The invention relates to the technical field of microfluidic channel structures. The invention discloses a microfluidic channel system with a high aspect ratio as well as a process for producing the microfluidic system. The process according to the invention enables the production of channel structures with aspect ratios of any magnitude without the process being limited by the manufacturing conditions to certain materials for the channel system. The channel system can thus be optimally adapted to a desired field of application.
Abstract:
A capillary reactor distribution device comprising first and second capillary pathways (2, 3) which meet at a junction (5) and a third capillary pathway (4) which leads away from the junction (5), the capillary pathways (2, 3, 4) being dimensioned such that, when first and second immiscible fluids (14, 15) are fed along respectively the first and second capillary pathways (2, 3) under predetermined laminar flow conditions, the first and second fluids (14, 15) chop each other into discrete slugs (16, 17) which pass along the third capillary pathway (4). Molecular mixing between the fluids (14, 15) takes place by way of axial diffusion between adjacent slugs (16, 17) and by way of internal circulation within each slug (16, 17) as the slugs (16, 17) progress along the third capillary pathway (4).
Abstract:
The present invention discloses a novel micro valve device, comprising a micro fluidic channel, which is formed by combining two hydrophobic plates, and the micro/nano structure on the wall surfaces of the channel are used to manipulate the mobility of the fluid in the channel. The function of the micro/nano structure mentioned above is to alter the micro or nano surface pattern on the wall surfaces of the channel. According to the relation between the surface pattern and the surface tension, the textured areas on the wall surfaces can change the mobility of the fluid in the channel. This effect is used as a switch in new types of micro valve devices for biomedical tests. Methods of making the micro valve device are described and include generating a micro/nano structure on the surfaces of the channel. The temporal control of different valve resistances can be achieved with different lengths, shapes, depths and materials of the micro/nano structures.