Abstract:
A method and apparatus for measuring channel quality over which has been transmitted a sequence of symbols produced by encoding and constellation mapping a source data element sequence. A sequence of received symbols is received over the channel. The sequence of received symbols is de-mapped based on a first channel quality indicator previously transmitted to a transmitter of the sequence of symbols. The de-mapped symbols are decoded to produce a decoded output sequence. In some embodiments, the decoding may be based on the first channel quality indicator. The decoded output sequence is re-encoded to produce a re-encoded output sequence. The de-mapped symbols are correlated with the re-encoded output sequence to produce a second channel quality indicator. The second channel quality indicator is transmitted to the transmitter to adaptively select a type of mapping based on the second channel quality indicator.
Abstract:
A method includes receiving in a communication terminal a signal, which is transmitted in multiple links and which includes a control channel transmitted in an assigned sequence of the links. One or more candidate sequences of the links, which are likely to be the assigned sequence, are identified. For at least, one candidate sequence, a verification is made whether the candidate sequence is the assigned sequence, by re-encoding decoded bits of the candidate sequence to produce regenerated symbols and comparing the regenerated symbols to respective received symbols from which the decoded bits were decoded. The control channel is decoded from the candidate sequence in response to verifying that the candidate sequence is the assigned sequence.
Abstract:
A system and method for encoding information is disclosed. In one embodiment, information is encoded using a high protection code for the least significant bit and a low protection code for the next three most significant bits. The remaining bits are uncoded. The high protection code may be a turbo code and the low protection code may be a trellis coded modulation code. In this embodiment, the collection of bits is then mapped according to a diagonally shifted QAM constellation technique.
Abstract:
In one aspect, a scrubber brush assembly is provided. The scrubber brush assembly includes (1) a cylindrical brush including exterior and interior surfaces; and (2) a sleeve having an exterior surface coupled to the interior surface of the scrubber brush and an interior surface. The exterior surface of the sleeve includes first coupling features adapted to prevent rotation of the sleeve relative to the brush. The scrubber brush assembly also includes a mandrel coupled to the interior surface of the sleeve. Numerous other aspects are provided.
Abstract:
A wireless device for implementing Incremental Redundancy (IR) operations includes an IR memory dedicated to storing data related to the IR operations. The IR memory includes a Type I IR memory adapted to store IR status information of a Radio Link Control (RLC) data block and a Type II IR memory adapted to store the RLC data block.
Abstract:
The present method resides in a user destination receiver to exploit the structure of the transmitted signals to design filters that yield improved performance. Moreover, the computational cost of designing these filters can be reduced and the demodulation complexity can be kept low. Further, the present method enables determining the order of decoding the transmitter sources. The present method provides group MMSE decision feedback decoding for the case when all the sources transmit at fixed pre-determined rates and the MCS employed by each source is known to the destination. The present method includes a filtering technique and an order and filter computation process, both improvements over previous efforts at group MMSE decision feedback decoding.
Abstract:
A detection system and method may be used to detect data transmitted in a signal with data pattern dependent signal distortion such as intersymbol interference. In general, a detection system and method compares samples of a received signal with stored samples of distorted signals associated with known data patterns and selects the known data patterns that correspond most closely with the samples of the received signal. The detection system and method may thus mitigate the effects of data pattern dependent signal distortion.
Abstract:
A system and method for encoding information is disclosed. In one embodiment, information is encoded using a high protection code for the least significant bit and a low protection code for the next three most significant bits. The remaining bits are uncoded. The high protection code may be a turbo code and the low protection code may be a trellis coded modulation code. In this embodiment, the collection of bits is then mapped according to a diagonally shifted QAM constellation technique.
Abstract:
A system for implementing Incremental Redundancy (IR) operations in a wireless receiver includes at least one processing device, an IR processing function, and IR memory. The at least one processing device is operable to receive analog signals corresponding to a data block, to sample the analog signals to produce samples, to equalize the samples to produce soft decision bits corresponding to the data block, and to initiate IR operations. The IR processing function is operable to perform IR operations on the soft decision bits of the data block in an attempt to correctly decode the data block. The IR memory operably couples to the IR processing function, includes Type I IR memory adapted to store IR status information of the data block, and includes Type II IR memory adapted to store the data block.
Abstract:
A method and apparatus for optimizing a system for transmitting a layered modulated signal is disclosed. The method comprises the steps of defining the system in terms of a set of system parameters, including an optimal power separation S between a power of a first modulation layer and a power of a second modulation layer and a required system carrier-to-noise ratio (CNRS), determining an optimal power separation S to minimize the error rate of a lower layer modulated signal BERL, and selecting the remaining system parameters in the set of system parameters using the determined optimal power separation S.