Abstract:
A sample analyzer comprising: a reagent container set section for setting a reagent container; a reader/writer configured to read out an information from the recording medium attached to the reagent container set in the reagent container set section and configured to write an information on the recording medium; a writing instruction section configured to issue an instruction to write the information on the recording medium; and a controller configured to control the reader/writer to write the information on the recording medium attached to the reagent container set in the reagent container set section if the kind information read out from the recording medium indicates the specific reagent and the writing instruction section has issued the writing instruction. Also, a method of writing information on a recording medium attached to a reagent container.
Abstract:
A sample analyzer comprising: a first container set section in which a first reagent container, wherein the first container set section includes a first operating section which is operated by a user when setting the first reagent container; a first detector configured to detect an operation of the first operating section; a second container set section in which a second reagent container, wherein the second container set section includes a second operating section which is operated by the user when setting the second reagent container; a second detector configured to detect an operation of the second operating section; an output section; and a controller configured to control the output section to output a predetermined notification, if the second detector detects the operation of the second operating section by the user when it is required to set the first reagent container in the first container set section.
Abstract:
The present invention concerns an apparatus for automatic processing at least one biological sample accommodated on a carrier member, such as slide by applying a predetermined amount of reagents in a predetermined sequence according to a processing protocol, said apparatus comprising; a housing frame; at least one processing section for accommodating at least one slide, the at least one processing section is provided within the housing; a hood cover protecting the at least one processing section in said housing; wherein the hood cover completely encloses the processing section defining an interior space; and wherein the apparatus further comprises climate control device provided to control the environment within the interior space.
Abstract:
A MEMS sensor includes a micro-electromechanical structure, a detection circuit, and a self-test circuit to test the health of the MEMS sensor during runtime operations. The self-test circuit is configured to inject into the micro-electromechanical structure a plurality of injected test signals that are broad-band frequency-varying frequency signals, which are based on spread spectrum based modulation. The injected test signals may a magnitude that is below an observable threshold of the sensor signal as well as a test-signal bandwidth that overlaps with a substantial portion of the sensor bandwidth, including the stimulus of interest.
Abstract:
The present invention concerns an apparatus for automatic processing at least one biological sample accommodated on a carrier member, such as a slide by applying a predetermined amount of reagents in a predetermined sequence according to a processing protocol, said apparatus comprising; a housing frame; at least one processing section for accommodating at least one slide, the at least one processing section is provided within the housing; a hood cover protecting the at least one processing section in said housing; wherein the hood cover completely encloses the processing section defining an interior space; and wherein the apparatus further comprises climate control device provided to control the environment within the interior space.
Abstract:
The present invention concerns an apparatus for staining tissue samples, said apparatus including a reagent section or reagent containers; at least one staining section or tissue samples, a robotic head or robotic element that may move reagent to a predetermined tissue sample, said robotic element being moveable above the reagent and the staining sections, a control element that may manage a staining process, a 2-D optical sensor to detect two-dimensional image data of a relevant property and that can feed the captured image data to the control element. By providing the robotic element with a 2-D optical sensor, a common image processor may be provided having multiple functions. By using a 2-D optical image processing system, the control system of the apparatus may easily be adapted to read various types of data presentations, just as actual images for sections of the apparatus may be identified in order to assess the condition of the apparatus. The optical sensor may be used to automatically identify the slides and the reagent containers present in the apparatus, just as the optical sensor may be used for checking if a slide is misplaced at or absent from a slide position, etc.
Abstract:
A sample processing system 101 that may be automated and methods are disclosed where sample(s) 198 are arranged on a carrier element 197 and a process operation control system 171 automatically processes the sample(s) perhaps robotically according to an desired aggregation of event dictated by an input 173. Alteration of an initial aggregated event topology may be accepted while the system is processing an initial aggregation and varied-parameter robotic control simulation functionalities 606 may be accomplished to determine an enhanced sequence for processing. Suggested operator actions may be displayed that might further enhance the scheduling of the altered aggregated event topology together with an automatic operator need prompt 608 that may inform an operator of a need for a particular action in order to accomplish the desired tasks. Reversibility to proposed changes may be made available so that an operator may avoid having to activate proposed changes if they cause a processing result that is not acceptable.
Abstract:
The present invention concerns an apparatus for automatic processing at least one biological sample accommodated on a carrier member, such as a slide by applying a predetermined amount of reagents in a predetermined sequence according to a processing protocol, said apparatus comprising; a housing frame; at least one processing section for accommodating at least one slide, the at least one processing section is provided within the housing; a hood cover protecting the at least one processing section in said housing; wherein the hood cover completely encloses the processing section defining an interior space; and wherein the apparatus further comprises climate control device provided to control the environment within the interior space.
Abstract:
A sample processing system 101 that may be automated and methods are disclosed where sample(s) 198 are arranged on a carrier element 197 and a process operation control system 171 automatically processes the sample(s) perhaps robotically according to an desired aggregation of event dictated by an input 173. Alteration of an initial aggregated event topology may be accepted while the system is processing an initial aggregation and varied-parameter robotic control simulation functionalities 606 may be accomplished to determine an enhanced sequence for processing. Suggested operator actions may be displayed that might further enhance the scheduling of the altered aggregated event topology together with an automatic operator need prompt 608 that may inform an operator of a need for a particular action in order to accomplish the desired tasks. Reversibility to proposed changes may be made available so that an operator may avoid having to activate proposed changes if they cause a processing result that is not acceptable.
Abstract:
The present invention concerns an apparatus for automatic processing at least one biological sample accommodated on a carrier member, such as a slide by applying a predetermined amount of reagents in a predetermined sequence according to a processing protocol, said apparatus comprising; a housing frame; at least one processing section for accommodating at least one slide, the at least one processing section is provided within the housing; a hood cover protecting the at least one processing section in said housing; wherein the hood cover completely encloses the processing section defining an interior space; and wherein the apparatus further comprises climate control device provided to control the environment within the interior space.