Abstract:
Methods and apparatus are provided to determine the emissivity, temperature and area of an object. The methods and apparatus are designed such that the emissivity and area of the object may be separately determined as functions dependent upon the temperature of the object derived from a three or more band infrared measurement sensor. As such, the methods and apparatus may only require a regression analysis of the temperature of the object without any regression analysis of the emissivity and area of the object.
Abstract:
A pyrometer includes a light source capable of emitting light to at least two wavelengths to a target to be measured. A light measuring member measures the light source and provides output signals representative of those two wavelengths. A second light measuring member measures light reflected by the target and provides second signals corresponding to the two wavelengths. A third light measuring member measures the intensity of the light radiated by the target with respect to those two wavelengths to produce third signals. An emissivity is assumed for the target based on the predetermined wavelengths, and a temperature is calculated on the basis of the minimum value of the difference between the assumed radiation intensity calculated according to the assumed emissivity of the target and the measured radiation intensity in accordance with the third signals.
Abstract:
A non-contact infrared temperature sensing system for determining temperature values for a series of targets all having a similar emissivity value, which calculates an emissivity value for the targets based on the sensed total heat radiated from one target, an inputted temperature value for that target, and a temperature value for extraneous radiation from that target. The system then computes, for each subsequent target whose heat radiation is detected, a temperature value for each said target dependent upon the emitted component of radiation, and independent of the extraneous component of radiation from that target.
Abstract:
A multi-point non-invasive, real-time pyrometry-based temperature sensor (200) for simultaneously sensing semiconductor wafer (22) temperature and compensating for wafer emissivity effects. The pyrometer (200) measures the radiant energy that a heated semiconductor wafer (22) emits and coherent beams of light (224) that the semiconductor wafer (22) reflects. As a result, the sensor (200) generates accurate, high-resolution multi-point measurements of semiconductor wafer (22) temperature during a device fabrication process. The pyrometer (200) includes an infrared laser source (202) that directs coherent light beam (203) into beam splitter (204). From the beam splitter (204), the coherent light beam (203) is split into numerous incident coherent beams (210). Beams (210) travel via optical fiber bundles (218) to the surface of semiconductor wafer (22) within the fabrication reactor (80). Each optical fiber bundle (218) collects reflected coherent light beam and radiant energy from wafer (22). Reflected coherent light beam (226) and radiant energy (222) is directed to a detector (240) for detecting signals and recording radiance, emissivity, and temperature values. Multiple optical fiber bundles (218) may be used in the sensor (200) for high spatial resolution multi-point measurements of wafer (22) temperature for precision real-time process control and uniformity optimizations.
Abstract:
A method of and device for contactless measuring of temperature of an object independently of its emissivity in infrared and/or visible range, is based on finding, by means of Planck law of radiation a curve which is the sum of the radiance or radiant intensity of a radiator having temperature and emissivity of the object and the radiance or radiant intensity of a radiator having the temperature of environment, the latter radiation being reflected by the object with the reflectivity .rho.=1-.epsilon. where .epsilon. is the emissivity of the object. The actual temperature of the object is found from the curve which is most similar to the curve of at least two values of radiance or radiant intensity detected from the object, plotted against the wavelengths. The device for carrying out the method includes a spectrometer, a modulator rotating at constant speed and having at least two filtering segments for the radiation wavelengths, an analog/digital converter clocked by pulses derived from the modulator to produce at its output digital signals, a microprocessor for reiteratively processing the digital data according to the Planck law of radiation, and a display unit for reading out the computed emissivity, the temperature of the object and the temperature of the environment.
Abstract:
When a steel sheet or the like is heated in a furnace to a temperature somewhat higher than the room temperature and is still or moved, its temperature can be measured by detecting the radiant energy therefrom. The measurement is normally difficult due to the influence of background noise of radiant energy from the surroundings, change of the transmittance factor of the environment or atmosphere for radiant energy, and change of the emissivity of the object to be measured. In order to remove such causes of errors and to correctly measure the temperature by detecting radiant energy, a radiometer and a black body radiator are disposed symmetrically and specularly with respect to the normal to a surface of an object to be measured, and two different amounts of radiant energies are emitted from the black body radiator, and the emissivity of the object to be measured is determined from the detected values from the radiometer, the two temperature values of the black body radiator, and the diffusely reflecting factor associated with the object to be measured, whereby correct measurement of the surface temperature of the object to be measured can be done. Embodiments for implementing this method are proposed.
Abstract:
A computer-implemented method of forming a thermal-based electronic image of an object that includes receiving electromagnetic radiation emitted by the object at an optically sensitive layer including a superpixel having a plurality of pixels. Each pixel of the plurality of pixels includes a plasmonic absorber having a characteristic resonance wavelength and that generates a radiance measurement of the electromagnetic radiation at its characteristic resonance wavelength. The method further provides for determining, at a processor, an emissivity and temperature for the electromagnetic radiation received at the superpixel using the radiance measurements obtained at the pixels of the superpixel. In addition, the method provides for forming an image of the object from the determined emissivity and temperature.
Abstract:
A Safety Cooking Device includes a thermal sensor that detects infrared radiation (IR) to generate thermal images of a cooktop over time, and a controller. The controller uses the thermal images to determine whether the cooktop is unattended. Both wired and wireless embodiments of the cooking safety device are disclosed. In one implementation, the cooking safety device is in communication with and reports to a security panel of a security system.
Abstract:
A temperature measurement device is provided with: light collection means; extraction means; optical intensity calculation means; and temperature measurement means. The light collection means collects the emission spectrum of a measurement subject. The extraction means extracts light having the wavelength of the atomic spectral lines and light having a wavelength in a wavelength region where there are no atomic spectral lines, from the emission spectrum collected by the aforementioned light collection means. The optical intensity calculation means calculates the optical intensities of the light extracted by the aforementioned extraction means. The temperature measurement means calculates the temperature of the aforementioned measurement subject, based on the intensities of the beams calculated by the aforementioned optical intensity calculation means.
Abstract:
There are provided an optical non-destructive inspection apparatus and an optical non-destructive inspection method. The apparatus includes a focusing-collimating unit, a heating laser beam source, a heating laser beam guide unit, an infrared detector, an emitted-infrared guide unit, first and second correcting laser beam source, first and second correcting laser beam guide units, first and second correcting laser detectors, first and second reflected laser beam guide units, and a control unit. The control unit controls the heating laser beam source and the first and second correcting laser beam sources, measures a temperature rise characteristic that is a temperature rise state of a measurement spot based on a heating time, on the basis of a detection signal from the infrared detector and detection signals from the first and second correcting laser detectors, and determines a state of a measurement object based on the measured temperature rise characteristic.