Abstract:
The disclosed technology includes a combustion system providing ease of access to components of the combustion system and optimal placement of a burner such that efficient combustion and heat transfer can occur. The combustion system can include an inner tube having a first end and a second end, the second end having a flange with a sensor port, and an outer tube having a first end and a second end. The inner tube can be disposed within the outer tube. The inner tube can have an outer diameter less than an inner diameter of the outer tube, creating a gap between the outer tube and inner tube. An ignitor assembly and a flame sensor assembly can extend through the sensor port and the gap and be positioned proximate a burner.
Abstract:
A multi-burner gas oven control system is used in a cooking appliance to control multiple gas burners disposed in one or more cooking cavities of the cooking appliance. Each gas burner has an associated dedicated gas valve that is coupled to a gas supply through a common, shared gas valve, as well as an igniter that is used to ignite the gas supplied to the gas burner. During activation of a selected gas burner, all igniters are activated in connection with activating the shared gas valve and the dedicated gas valve for the selected gas burner. In addition, in some instances individual ignition sensors may be used to both confirm ignition of the selected gas burner and detect ignition of any unintended gas burner.
Abstract:
A burner has: a combustion plate part for ejecting air-fuel mixture; and a flame rod which lies opposite to a portion of the combustion plate part which has a picture-frame-like burner frame; a metal-fiber knit which covers an opening enclosed by the burner frame; and a distribution plate which has formed therein distribution holes and which sandwiches the metal-fiber knit between the burner frame and the distribution plate through the distribution holes and the metal-fiber knit. The flame rod has: a rod base part which lies opposite to a portion of opening peripheral part of the burner frame which is positioned on the same surface level as the opening; and a rod main body part which lies opposite to a portion of the metal-fiber knit. The distance between the rod base part and the opening peripheral part is made smaller than the distance between the rod main body part and the metal-fiber knit.
Abstract:
A gas stove having a temperature sensing function comprises a stove body, a temperature sensor and a gas controller. The stove body includes a burner assembly for heating a pot. The temperature sensor includes a thermopile sensor and a signal processor. The thermopile sensor senses infrared rays radiating from the pot and outputs a sensing signal. The signal processor is electrically connected with the thermopile sensor to process the sensing signal and outputs a control signal. The gas controller is electrically connected with the signal processor and adjusts a gas flow supplied to the burner assembly according to the control signal. The aforementioned gas stove senses the temperature of the pot with a non-contact manner.
Abstract:
In a gas turbine combustor 3 of the present invention, an air hole plate 20 includes a center air hole group 51 configured from a plurality of air holes 51A and 51B and a plurality of outer circumferential air hole groups 52 configured from a plurality of air holes 52A, 52B, and 52C and formed to surround the center air hole group 51. The gas turbine combustor 3 includes a hole part 601 and a temperature sensor 401 provided on the air hole plate 20 to be located in a region surrounded by two outer circumferential air hole groups 52 adjacent to each other and the center air hole group 51, a supply source 220 of coolant, a cooling pipeline 205 that connects the hole part 601 and the supply source 220, valves 67 and 68 provided in the cooling pipeline 205, and a control system 500 that drives the valves 67 and 68 on the basis of a measured value of the temperature sensor 401.
Abstract:
An apparatus and method are provided for improved gas pilot burners, which are capable of simultaneous flame ignition and flame detection. More particularly, the invention provides for an apparatus and method capable of simultaneous high-energy ignition and flame ionization detection in a high-energy igniter that utilizes a spark rod located in a fuel channel.
Abstract:
A horizontally-fired flame burner includes a flame holder positioned laterally from the burner. The flame holder includes a plurality of perforations that collectively confine a combustion reaction of the burner to the flame holder.
Abstract:
According to an embodiment, a combustion system is provided, which includes a nozzle configured to emit a diverging fuel flow, a flame holder positioned in the path of the fuel flow and that includes a plurality of apertures extending therethrough, and a preheat mechanism configured to heat the flame to a temperature exceeding a startup temperature threshold.
Abstract:
A combustion system such as a furnace or boiler includes a perforated reaction holder configured to hold a combustion reaction that produces very low oxides of nitrogen (NOx).
Abstract:
A combustion system such as a furnace or boiler includes a perforated reaction holder configured to hold a combustion reaction that produces very low oxides of nitrogen (NOx).