Abstract:
A multi-level flash memory comprises a semiconductor substrate, a gate structure having a lower block positioned in the semiconductor substrate and an upper block positioned on the semiconductor substrate, and a plurality of storage structures separated by the gate structure. The upper block connects to the lower block of the gate structure, and each of the storage structures includes a charge-trapping site and an insulation structure surrounding the charge-trapping site.
Abstract:
A dynamic random access memory structure comprises a substrate having a first diffusion region and a second diffusion region, a dielectric structure overlaying the substrate, a capacitor contact plug disposed in the dielectric structure and connected to the first diffusion region, a bit-line contact plug disposed in the dielectric structure and connected to the second diffusion region, a metal silicide disposed on the capacitor contact plug, and a capacitive structure disposed on the dielectric structure and connected to the metal silicide.
Abstract:
A method for preparing a P-type polysilicon gate structure comprises the steps of forming a gate oxide layer on a substrate, forming an N-type polysilicon layer on the gate oxide layer, performing a first implanting process to convert the N-type polysilicon layer into a P-type polysilicon layer, performing a second implanting process to implant P-type dopants into a portion of the P-type polysilicon layer near the interface between the gate oxide layer and the P-type polysilicon layer, and performing a thermal treating process at a predetermined temperature for a predetermined period to complete the P-type polysilicon gate structure.
Abstract:
A method for preparing a memory structure comprises the steps of forming a plurality of line-shaped blocks on a dielectric structure of a substrate, and forming a first etching mask exposing a sidewall of the line-shaped blocks. A portion of the line-shaped blocks is removed incorporating the first etching mask to reduce the width of the line-shaped blocks to form a second etching mask including a plurality of first blocks and second blocks arranged in an interlaced manner. Subsequently, a portion of the dielectric structure not covered by the second etching mask is removed to form a plurality of openings in the dielectric structure, and a conductive plug is formed in each of the openings. The plurality of openings includes first openings positioned between the first blocks and second openings positioned between the second blocks, and the first opening and the second opening extend to opposite sides of an active area.
Abstract:
A phase-change memory comprises a bottom electrode formed on a substrate. A first isolation layer is formed on the bottom electrode. A top electrode is formed on the isolation layer. A first phase-change material is formed in the first isolation layer, wherein the top electrode and the bottom electrode are electrically connected via the first phase-change material. Since the phase-change material can have a diameter less than the resolution limit of the photolithography process, an operating current for a state conversion of the phase-change material pattern may be reduced so as to decrease a power dissipation of the phase-change memory device.
Abstract:
A recessed gate structure comprises a semiconductor substrate, a recess positioned in the semiconductor substrate, a gate oxide layer positioned in the recess and a conductive layer positioned on the gate oxide layer, wherein the semiconductor substrate has a multi-step structure in the recess. The thickness of the gate oxide layer on one step surface can be different from that on another step surface of the multi-step structure. In addition, the recessed gate structure further comprises a plurality of doped regions positioned in the semiconductor substrate under the multi-step structure, and these doped regions may use different dosages and different types of dopants. There is a carrier channel in the semiconductor substrate under the recessed gate structure and the overall channel length of the carrier channel is substantially the summation of the lateral width and twice of the vertical depth of the recessed gate structure.
Abstract:
Memories with low power consumption and methods for suppressing current leakage of a memory. The memory cell of the memory has a storage element and a transistor coupled in series. The invention sets a voltage across the transistor approaching to zero when the memory is not been accessed.
Abstract:
A semiconductor device with an L-shape spacer and the method for manufacturing the same are provided. The semiconductor device comprises a substrate, a composite spacer, and a tunnel insulating layer. The substrate comprises a shallow trench isolation structure and a neighboring active area. The composite spacer is formed on the sidewall of the shallow trench isolation structure, and further comprises a first insulating layer and an L-shape second insulating layer spacer, wherein the first insulating layer is located between the L-shape second insulating layer spacer and the substrate. The tunnel insulating layer is located on the substrate of the active area and connects to the first insulating layer of the composite spacer on its corresponding side.
Abstract:
A phase change memory array is disclosed, comprising a first cell having a patterned phase change layer, and a second cell having a patterned phase change layer, wherein the patterned phase change layer of the first cell and the patterned phase change layer of the second cell are disposed at different layers.
Abstract:
A method for forming micro-patterns is disclosed. The method forms a sacrificial layer and a mask layer. A plurality of first taper trenches is formed in the sacrificial layer. A photoresist layer is filled in the plurality of first taper trenches. The photoresist layer is used as a mask and a plurality of second taper trenches is formed in the sacrificial layer. Then, the photoresist layer is stripped to be capable of patterning a layer by the first taper trenches and the second taper trenches in the sacrificial layer. Therefore, a patterned sacrificial layer duplicating the line density by double etching is formed.