Abstract:
A method for forming a semiconductor device is provided. The method includes the following steps. A substrate having a first contact is provided. A layered structure is formed on the substrate. A recess is formed into the layered structure to expose at least a portion of the first contact. A glue layer is formed on the layered structure and the at least a portion of the first contact. The glue layer is removed from the at least a portion of the first contact. A second contact is formed contacting the first contact and the glue layer.
Abstract:
A bus structure includes multiple soft buses and a soft separation layer. These multiple soft buses are stacked side by side each other. The soft separation layer is sandwitched between two adjacent soft buses.
Abstract:
A bus structure includes multiple soft buses and a soft separation layer. These multiple soft buses are stacked side by side each other. The soft separation layer is sandwitched between two adjacent soft buses.
Abstract:
An improved thin film inductor design is described. A spiral geometry is used to which has been added a core of high permeability material located at the center of the spiral. If the high permeability material is a conductor, care must be taken to avoid any contact between the core and the spiral. If a dielectric ferromagnetic material is used, this constraint is removed from the design. Several other embodiments are shown in which, in addition to the high permeability core, provide low reluctance paths for the structure. In one case this takes the form of a frame of ferromagnetic material surrounding the spiral while in a second case it has the form of a hollow square located directly above the spiral.
Abstract:
This invention provides a method for forming a self aligned contact without key holes using a two step sidewall spacer deposition. The process begins by providing a semiconductor structure having a device layer, a first inter poly oxide layer (IPO-1), and a conductive structure (such as a bit line) thereover, and having a contact area on the device layer adjacent to the conductive structure. The semiconductor structure can further include an optional etch stop layer overlying the first inter poly oxide layer. The conductive structure comprises at least one conductive layer with a hard mask thereover. A first spacer layer is formed over the hard mask and the IPO-1 layer and anisotropically etched to form first sidewall spacers on the sidewalls of the conductive structure up to a level above the bottom of the hard mask and below the level of the top of the hard mask such that the profile of the first sidewall spacers are not concave at any point. A second spacer layer is formed over the first sidewall spacers and anisotropically etched to form second sidewall spacers, having a profile that is not concave at any point. A second inter poly oxide layer is formed over the second sidewall spacers, the hard mask, and the IPO-1 layer, whereby the second inter poly oxide layer is free from key holes. A contact opening is formed in the second inter poly oxide layer and the first inter poly oxide layer over the contact area. A contact plug is formed in the contact openings.
Abstract:
A new method of forming an improved buried contact junction is described. A gate silicon oxide layer is provided over the surface of a semiconductor substrate. A polysilicon layer is deposited overlying the gate oxide layer. A hard mask layer is deposited overlying the polysilicon layer. The hard mask and polysilicon layers are etched away where they are not covered by a mask to form a polysilicon gate electrode and interconnection lines wherein gaps are left between the gate electrode and interconnection lines. A layer of dielectric material is deposited over the semiconductor substrate to fill the gaps. The hard mask layer is removed. The polysilicon layer is etched away where it is not covered by a buried contact mask to form an opening to the semiconductor substrate. Ions are implanted to form the buried contact. A refractory metal layer is deposited overlying the buried contact and the polysilicon gate electrode and interconnection lines and planarized to form polycide gate electrodes and interconnection lines. The dielectric material layer is removed. An oxide layer is deposited and anisotropically etched to leave spacers on the sidewalls of the polycide gate electrodes and interconnection lines to complete the formation of a buried contact junction in the fabrication of an integrated circuit.
Abstract:
Semiconductor devices and methods for fabricating the same are provided. An exemplary embodiment of a semiconductor device comprises a substrate with a plurality of isolation structures formed therein, defining first and second areas over the substrate. A transistor is formed on a portion of the substrate in the first and second areas, respectively, wherein the transistor in the second area is formed with merely a pocket doping region in the substrate adjacent to a drain region thereof. A first dielectric layer is formed over the substrate, covering the transistor formed in the first and second areas. A plurality of first contact plugs is formed through the first dielectric layer, electrically connecting a source region and a drain region of the transistor in the second area, respectively. A second dielectric layer is formed over the first dielectric layer with a capacitor formed therein, wherein the capacitor electrically connects one of the first contact plugs.
Abstract:
A bus structure includes multiple soft buses and a soft separation layer. These multiple soft buses are stacked side by side each other. The soft separation layer is sandwiched between two adjacent soft buses.
Abstract:
A securing device includes a sustaining member, a plurality of threaded holes, and a plurality of screws. The sustaining member includes a clamped portion and a securing portion extending from the clamped portion. The clamped portion is interfaced between the photoelectric conversion device and the carriage module housing. The thickness of the clamped portion is even enough to keep the distance between the photoelectric conversion device and the carriage module housing constant, thereby assuring that the photoelectric conversion device is orthogonal to the central line of a lens in the carriage module housing. The securing portion is flexible so as to facilitate the assembling operation of the circuit board, the photoelectric conversion device and the carriage module housing by way of the threaded holes and screws.