摘要:
New ligands, compositions, metal-ligand complexes and arrays with pyridyl-amine ligands are disclosed that catalyze the polymerization of monomers into polymers. Certain of these catalysts with hafnium metal centers have high performance characteristics, including higher comonomer incorporation into ethylene/olefin copolymers, where such olefins are for example, 1-octene, isobutylene or styrene. Certain of the catalysts are particularly effective at polymerizing propylene to high molecular weight isotactic polypropylene in a solution process at a variety of polymerization conditions.
摘要:
The present invention generally relates to processes for the conversion of glucose to caprolactam employing chemocatalytic oxidation and reduction reactions. The present invention also includes processes for the conversion of glucose to caprolactam via amido polyhydroxy acid products and amidocaproic acid or derivatives thereof. The present invention also includes processes that catalytically oxidize an amidopolyol to amidopolyhydroxy acid or derivatives thereof, and processes that catalytically hydrodeoxygenate amino or amido polyhydroxy acid or derivatives thereof to an amino or amidocaproic acid product. The amino or amidocaproic acid product may then be converted to caprolactam. The present invention also includes products produced by such processes and products producable from such products.
摘要:
The present invention provides methods and systems for discretized, combinatorial processing of regions of a substrate such as for the discovery, implementation, optimization, and qualification of new materials, processes, and process sequence integration schemes used in integrated circuit fabrication. A substrate having an array of differentially processed regions thereon is processed by delivering materials to or modifying regions of the substrate.
摘要:
Disclosed are compositions of matter comprising an adipic acid product of formula (1) wherein R is independently a salt-forming ion, hydrogen, hydrocarbyl, or substituted hydrocarbyl, and at least one constituent selected from the group consisting of formula (2) wherein R is as defined above and each of R1 is, independently, H, OH, acyloxy or substituted acyloxy provided, however, that at least one of R1 is OH, and formula (3) wherein R is as above defined and R1 is OH, acyloxy or substituted acyloxy. Also disclosed are compositions of matter comprising at least about 99 wt % adipic acid and least two constituents selected from the group consisting of formula (2) and formula (3), above.
摘要翻译:公开了包含式(1)的己二酸产物的组合物,其中R独立地为成盐离子,氢,烃基或取代的烃基,以及选自式(2)的至少一种成分,其中R R 1独立地是H,OH,酰氧基或取代的酰氧基,然而,R 1中的至少一个是OH,和式(3)其中R如上所定义,R 1是OH,酰氧基 或取代的酰氧基。 还公开了包含至少约99重量%己二酸和至少两种选自上述式(2)和式(3)的组分的物质组合物。
摘要:
A masking layer is formed on a dielectric region of an electronic device so that, during subsequent formation of a capping layer on electrically conductive regions of the electronic device that are separated by the dielectric region, the masking layer inhibits formation of capping layer material on or in the dielectric region. The capping layer can be formed selectively on the electrically conductive regions or non-selectively; in either case, capping layer material formed over the dielectric region can subsequently be removed, thus ensuring that capping layer material is formed only on the electrically conductive regions. Silane-based materials, can be used to form the masking layer. The capping layer can be formed of an conductive material, a semiconductor material, or an insulative material, and can be formed using any appropriate process, including conventional deposition processes such as electroless deposition, chemical vapor deposition, physical vapor deposition or atomic layer deposition.
摘要:
A masking layer is formed on a dielectric region of an electronic device so that, during subsequent formation of a capping layer on electrically conductive regions the masking layer inhibits formation of capping layer material on the dielectric region. The capping layer can be formed selectively on the electrically conductive regions or non-selectively; in either case, capping layer material formed over the dielectric region can subsequently be removed, thus ensuring that capping layer material is formed only on the electrically conductive regions. Silane-based materials, such as silane-based SAMs, can be used to form the masking layer. The capping layer can be formed of an electrically conductive, a semiconductor material, or an electrically insulative material, and can be formed using any appropriate process, including conventional deposition processes such as electroless deposition, chemical vapor deposition, physical vapor deposition or atomic layer deposition.
摘要:
Methods for substrate processing are described. The methods include forming a material layer on a substrate. The methods include selecting constituents of a molecular masking layer (MML) to remove an effect of variations in the material layer as a result of substrate processing. The methods include normalizing the surface characteristics of the material layer by selectively depositing the MML on the material layer.
摘要:
A masking layer is formed on a dielectric region of an electronic device so that, during subsequent formation of a capping layer on electrically conductive regions of the electronic device that are separated by the dielectric region, the masking layer inhibits formation of capping layer material on or in the dielectric region. The capping layer can be formed selectively on the electrically conductive regions or non-selectively; in either case (particularly in the latter), capping layer material formed over the dielectric region can subsequently be removed, thus ensuring that capping layer material is formed only on the electrically conductive regions. Silane-based materials, such as silane-based SAMs, can be used to form the masking layer. The capping layer can be formed of an electrically conductive material (e.g., a cobalt alloy, a nickel alloy, tungsten, tantalum, tantalum nitride), a semiconductor material, or an electrically insulative material, and can be formed using any appropriate process, including conventional deposition processes such as electroless deposition, chemical vapor deposition, physical vapor deposition or atomic layer deposition.
摘要:
The present invention provides methods and systems for discretized, combinatorial processing of regions of a substrate such as for the discovery, implementation, optimization, and qualification of new materials, processes, and process sequence integration schemes used in integrated circuit fabrication. A substrate having an array of differentially processed regions thereon is processed by delivering materials to or modifying regions of the substrate.
摘要:
New ligands, compositions, metal-ligand complexes and arrays with pyridyl-amine ligands are disclosed that catalyze the polymerization of monomers into polymers. Certain of these catalysts with hafnium metal centers have high performance characteristics, including higher comonomer incorporation into ethylene/olefin copolymers, where such olefins are for example, 1-octene, isobutylene or styrene. Certain of the catalysts are particularly effective at polymerizing propylene to high molecular weight isotactic polypropylene in a solution process at a variety of polymerization conditions.