Abstract:
Some embodiments of the present disclosure relate to a high electron mobility transistor (HEMT) which includes a heterojunction structure arranged over a semiconductor substrate. The heterojunction structure includes a first III/V semiconductor layer, and a second III/V semiconductor layer arranged over the first III/V semiconductor layer. Source and drain regions are arranged over the second III/V semiconductor layer and are spaced apart laterally from one another. A gate structure is arranged over the heterojunction structure and is arranged between the source and drain regions. The gate structure is made of a third III-nitride material. A first passivation layer is disposed about sidewalls of the gate structure and is made of a fourth III-nitride material.
Abstract:
Some embodiments of the present disclosure relates to a hybrid gate dielectric layer that has good interface and bulk dielectric properties. Surface traps can degrade device performance and cause large threshold voltage shifts in III-N HEMTs. This disclosure uses a hybrid ALD (atomic layer deposited)-oxide layer which is a combination of H2O-based and O3/O2-based oxide layers that provide both good interface and good bulk dielectric properties to the III-N device. The H2O-based oxide layer provides good interface with the III-N surface, whereas the O3/O2-based oxide layer provides good bulk properties.
Abstract translation:本公开的一些实施例涉及具有良好的界面和体介电特性的混合栅极介电层。 表面捕集阱可能会降低器件性能,并在III-N HEMT中引起较大的阈值电压漂移。 本公开使用混合ALD(原子层沉积) - 氧化物层,其是基于H 2 O和O 3 / O 2的氧化物层的组合,其为III-N器件提供良好的界面和良好的体积介电性质。 H 2 O基氧化物层与III-N表面提供良好的界面,而O 3 / O 2基氧化物层提供良好的体积性质。
Abstract:
The present disclosure, in some embodiments, relates to a semiconductor device. The semiconductor device includes an electron supply layer that is disposed over an upper surface of a semiconductor material and that is laterally arranged between a first conductive terminal and a second conductive terminal. A III-N (III-nitride) semiconductor material is disposed over the electron supply layer. A passivation layer is disposed over the III-N semiconductor material, along a side of the III-N semiconductor material, and over the electron supply layer. An insulating material is arranged over the passivation layer and along opposing sidewalls of the second conductive terminal, and a gate structure is disposed over the passivation layer. The passivation layer has an uppermost surface that is directly coupled to a sidewall of the passivation layer. The insulating material extends along the sidewall of the passivation layer.
Abstract:
Some embodiments of the present disclosure relate to a high electron mobility transistor (HEMT) which includes a heterojunction structure arranged over a semiconductor substrate. The heterojunction structure includes a binary III/V semiconductor layer made of a first III-nitride material to act as a channel region of the e-HEMT, and a ternary III/V semiconductor layer arranged over the binary III/V semiconductor layer and made of a second III-nitride material to act as a barrier layer. Source and drain regions are arranged over the ternary III/V semiconductor layer and are spaced apart laterally from one another. A gate structure is arranged over the heterojunction structure and is arranged between the source and drain regions. The gate structure is made of a third III-nitride material. A first passivation layer is disposed about sidewalls of the gate structure and is made of a fourth III-nitride material.
Abstract:
A high-electron mobility transistor (HEMT) device employing a gate protection layer is provided. A substrate has a channel layer arranged over the substrate and has a barrier layer arranged over the channel layer. The channel and barrier layers define a heterojunction, and a gate structure is arranged over a gate region of the barrier layer. The gate structure includes a gate arranged over a cap, where the cap is disposed on the barrier layer. The gate protection layer is arranged along sidewalls of the cap and arranged below the gate between opposing surfaces of the gate and the cap. Advantageously, the gate protection layer passivates the gate, reduces leakage current along sidewalls of the cap, and improves device reliability and threshold voltage uniformity. A method for manufacturing the HEMT device is also provided.
Abstract:
Some embodiments of the present disclosure relate to a high electron mobility transistor (HEMT) which includes a heterojunction structure arranged over a semiconductor substrate. The heterojunction structure includes a binary III/V semiconductor layer made of a first III-nitride material to act as a channel region of the e-HEMT, and a ternary III/V semiconductor layer arranged over the binary III/V semiconductor layer and made of a second III-nitride material to act as a barrier layer. Source and drain regions are arranged over the ternary III/V semiconductor layer and are spaced apart laterally from one another. A gate structure is arranged over the heterojunction structure and is arranged between the source and drain regions. The gate structure is made of a third III-nitride material. A first passivation layer is disposed about sidewalls of the gate structure and is made of a fourth III-nitride material.
Abstract:
Some embodiments of the present disclosure relate to a high electron mobility transistor (HEMT) which includes a heterojunction structure arranged over a semiconductor substrate. The heterojunction structure includes a binary III/V semiconductor layer made of a first III-nitride material to act as a channel region of the e-HEMT, and a ternary III/V semiconductor layer arranged over the binary III/V semiconductor layer and made of a second III-nitride material to act as a barrier layer. Source and drain regions are arranged over the ternary III/V semiconductor layer and are spaced apart laterally from one another. A gate structure is arranged over the heterojunction structure and is arranged between the source and drain regions. The gate structure is made of a third III-nitride material. A first passivation layer is disposed about sidewalls of the gate structure and is made of a fourth III-nitride material.
Abstract:
The present disclosure relates to a structure and method of forming a low damage passivation layer for III-V HEMT devices. In some embodiments, the structure has a bulk buffer layer disposed over a substrate and a device layer of III-V material disposed over the bulk buffer layer. A source region, a drain region and a gate region are disposed above the device layer. The gate region comprises a gate electrode overlying a gate separation layer. A bulk passivation layer is arranged over the device layer, and an interfacial layer of III-V material is disposed between the bulk passivation layer and the device layer in such a way that the source region, the drain region and the gate region extend through the bulk passivation layer and the interfacial layer, to abut the device layer.
Abstract:
Some embodiments of the present disclosure relate to a high electron mobility transistor (HEMT) which includes a heterojunction structure arranged over a semiconductor substrate. The heterojunction structure includes a binary III/V semiconductor layer made of a first III-nitride material to act as a channel region of the e-HEMT, and a ternary III/V semiconductor layer arranged over the binary III/V semiconductor layer and made of a second III-nitride material to act as a barrier layer. Source and drain regions are arranged over the ternary III/V semiconductor layer and are spaced apart laterally from one another. A gate structure is arranged over the heterojunction structure and is arranged between the source and drain regions. The gate structure is made of a third III-nitride material. A first passivation layer is disposed about sidewalls of the gate structure and is made of a fourth III-nitride material.
Abstract:
Some embodiments of the present disclosure relates to a crystalline passivation layer for effectively passivating III-N surfaces. Surface passivation of HEMTs reduces or eliminates the surface effects that can otherwise degrade device performance. The crystalline passivation layer reduces the degrading effects of surface traps and provides a good interface between a III-nitride surface and an insulator (e.g., gate dielectric formed over the passivation layer).