Abstract:
A particle-optical arrangement comprises a charged-particle source for generating a beam of charged particles; a multi-aperture plate arranged in a beam path of the beam of charged particles, wherein the multi-aperture plate has a plurality of apertures formed therein in a predetermined first array pattern, wherein a plurality of charged-particle beamlets is formed from the beam of charged particles downstream of the multi-aperture plate, and wherein a plurality of beam spots is formed in an image plane of the apparatus by the plurality of beamlets, the plurality of beam spots being arranged in a second array pattern; and a particle-optical to element for manipulating the beam of charged particles and/or the plurality of beamlets; wherein the first array pattern has a first pattern regularity in a first direction, and the second array pattern has a second pattern regularity in a second direction electron-optically corresponding to the first direction, and wherein the second regularity is higher than the first regularity.
Abstract:
An electron-optical corrector for rendering superfluous both the third-order opening error and the anisotropic part of the extra-axial third-order coma, using round lenses and hexapole fields, the corrector includes at least three coaxially arranged hexapole fields with at least one round lens field is arranged between adjacent hexapole fields, so that the hexapole fields are imaged onto each other in pairs. The intensities of the hexapole fields are selected so that the image error coefficient of the three-fold astigmatism is equal to 0, and at least three hexapole fields in the Larmor reference system are rotated in relation to each other at an angle about the optical axis.
Abstract:
Disclosed is a lens array having a laterally movable axis for corpuscular rays, particularly for transmission from areas of an object surface onto the focal plane by means of electrons. The inventive array consists of a combined lens comprising a cylinder lens and a quadrupole lens provided with slit diaphragms which can be impinged upon by electric and/or magnetic fields. The optical axis of the quadrupole lens is oriented parallel to the axis of the cylinder lens and defines the optical axis of the projection, the position of which can be altered in relation to the axis of the cylinder lens. The quadrupole lens is in focus in the sector in which the cylinder lens is not in focus and is out of focus in the section in which the cylinder lens is in focus. The inventive combined lens can be operated as an immersion lens for projecting secondary electrons. The immersion field consists of at least two adjacent axially aligned fields. The first field lies between the object and the first slit diaphragm, and the second field lies between the first slit diaphragm and the second slit diaphragm. Both fields can be focused independently from each other. The potential difference between the object and the first diaphragm is comparatively small in relation to the potential difference between the first diaphragm and the second diaphragm, and the potential course between the object and the first diaphragm has to be approximately linear. The combined lens is brought into/out of focus by superposing the immersion field, the cylinder lens field, and the quadrupole field. Alternatively, the lens array can be used as a cathode lens for a photocathode with several homogenous adjacent emission areas.
Abstract:
A monochromator (1) for a charged particle optics, in particular, for electron microscopy, comprises at least one first deflection element (2, 3) with an electrostatic deflecting field (2′, 3′) for generating a dispersion (4) in the plane (5) of a selection aperture (6) to select charged particles of a desired energy interval (7) and at least one second deflection element (8, 9) with an electrostatic deflecting field (8′, 9′) which eliminates the dispersion (4) of the at least one first deflecting field (2′, 3′). A radiation source (17) comprises such a monochromator (1). High monchromatism without intensity contrasts caused by defects of the slit aperture is thereby achieved in that the deflection elements (2, 3, 8, 9) have a design other than spherically shaped and their electrodes (24, 25) are given a potential (φ+, φ−) such that the charged particles (xα, yβ) which virtually enter the image of the radiation source (17) at different respective angles (α, β) in different sections (x, y), are differently focused such that charged particles (xα, yβ) of one energy are point focused (10, 10′, 10″) exclusively in the plane (5) of the selection aperture (6), since zero-crossings (11, 12) of the deflections (A) of the charged particles (xα, yβ) of the different sections (x, y) only coincide there at the same axial position (z, E).
Abstract:
An electron-optical arrangement provides a primary beam path for a beam of primary electrons and a secondary beam path for secondary electrons. The electron-optical arrangement includes a magnet arrangement having first, second and third magnetic field regions. The first magnetic field region is traversed by the primary beam path and the secondary beam path. The second magnetic field region is arranged in the primary beam path upstream of the first magnetic field region and is not traversed by the secondary beam path. The first and second magnetic field regions deflect the primary beam path in substantially opposite directions. The third magnetic field region is arranged in the secondary beam path downstream of the first magnetic field region and is not traversed by the first beam path. The first and third magnetic field regions deflect the secondary beam path in a substantially same direction.
Abstract:
A particle-optical corrector for eliminating both the third-order aperture aberration and the third-order extra-axial coma, using circular lenses and hexapole fields, includes three coaxially arranged hexapole fields, at least one circular lens doublet being arranged between adjacent hexapole fields and adjusted so that the center hexapole field is imaged on the hexapole fields. Between the hexapole fields, an intermediate plane prevails and the intermediate planes are conjugated with one another. The three hexapole fields are identically oriented in the Larmor reference system with the intensities of the three fields being chosen so that the image aberration coefficient of the astigmatism with three-fold symmetry becomes 0. The corrective contains two hexapole fields, in which the fields of the hexapole field pair are excited anti-symmetrically to one another, and the pairs are in each case arranged around the two intermediate planes. The orientation of the hexapole field pairs is rotated with respect to the orientation defined by the hexapole fields by a sufficient angle so that the extra-axial third order coma is corrected.
Abstract:
An electron-optical arrangement provides a primary beam path for a beam of primary electrons and a secondary beam path for secondary electrons. The electron-optical arrangement includes a magnet arrangement having first, second and third magnetic field regions. The first magnetic field region is traversed by the primary beam path and the secondary beam path. The second magnetic field region is arranged in the primary beam path upstream of the first magnetic field region and is not traversed by the secondary beam path. The first and second magnetic field regions deflect the primary beam path in substantially opposite directions. The third magnetic field region is arranged in the secondary beam path downstream of the first magnetic field region and is not traversed by the first beam path. The first and third magnetic field regions deflect the secondary beam path in a substantially same direction.
Abstract:
An electron microscopy system comprises an objective lens (19) which images a field displaceable in x-direction on a fixed beam axis (17). The objective lens has an astigmatic effect which is compensated for by a beam shaper (63) on the fixed axis. Furthermore, lens configurations can selectively act on the primary electron beam or the secondary electron beam.
Abstract:
Disclosed is a lens array having a laterally movable axis for corpuscular rays, particularly for transmission from areas of an object surface onto the focal plane by means of electrons. The inventive array consists of a combined lens comprising a cylinder lens and a quadrupole lens provided with slit diaphragms which can be impinged upon by electric and/or magnetic fields. The optical axis of the quadrupole lens is oriented parallel to the axis of the cylinder lens and defines the optical axis of the projection, the position of which can be altered in relation to the axis of the cylinder lens. The quadrupole lens is in focus in the sector in which the cylinder lens is not in focus and is out of focus in the section in which the cylinder lens is in focus. The inventive combined lens can be operated as an immersion lens for projecting secondary electrons. The immersion field consists of at least two adjacent axially aligned fields. The first field lies between the object and the first slit diaphragm, and the second field lies between the first slit diaphragm and the second slit diaphragm. Both fields can be focused independently from each other. The potential difference between the object and the first diaphragm is comparatively small in relation to the potential difference between the first diaphragm and the second diaphragm, and the potential course between the object and the first diaphragm has to be approximately linear. The combined lens is brought into/out of focus by superposing the immersion field, the cylinder lens field, and the quadrupole field. Alternatively, the lens array can be used as a cathode lens for a photocathode with several homogenous adjacent emission areas.
Abstract:
An electrostatic corrector with a rectilinear optical axis has two corrective parts, which are arranged one behind the other along the optical axis and which have respective quadrupole fields and superimposed circular lens fields. The astigmatic intermediate image of one cross-section that is created by an axis point lies in one corrective part and the astigmatic intermediate image of the other cross-section, which is perpendicular to the first cross-section, lies in the other corrective part. An object of the invention is to eliminate the chromatic aberration of particle lenses. To achieve this, an electrostatic corrector is used, which includes two corrector units having similar instrumental construction, with each of the two corrector units having input and output sides on which two additional electrostatic quadrupoles are located. The two corrector units represent the axial paths in a telescopic manner in a 1:1 representation. The two corrector units are arranged one behind the other along the optical axia and are rotated by 90° about the optical axis relative to one another.