Abstract:
A composition including a polyamideimide precursor modified with an alkoxysilane group and an oligosilica compound, wherein the oligosilica compound is a condensation reaction product of an organosilane diol and an alkoxysilane compound.
Abstract:
A poly(imide-amide) copolymer including a structural unit represented by Chemical Formula 1; a structural unit represented by Chemical Formula 2; and any one of a structural unit represented by Chemical Formula 3, an amic acid precursor of the structural unit represented by Chemical Formula 3, and a combination thereof; wherein a cured material of the poly(imide-amide) copolymer may have a tensile modulus of greater than or equal to about 5.5 GPa, and a yellowness index of less than or equal to about 5: wherein, groups and variables in Chemical Formulae 1 and 3 are the same as described in the specification.
Abstract:
A composition including a polyamic acid modified with an alkoxysilane group; and an oligo silica compound, wherein the polyamic acid modified with an alkoxysilane group includes a reaction product of (i) a condensation reaction product of an acid anhydride and a diamine, and (ii) a reactive organosilane compound, wherein the oligo silica compound includes a condensation reaction product of an organosilane diol and a an alkoxysilane compound, wherein an amount of silicon atoms in the composition is less than or equal to about 15 wt % based on a total weight of solid contents in the composition.
Abstract:
A stacked transparent film includes a polymer film including at least one of an amide structural unit and an imide structural unit, wherein the polymer film has a refractive index of about 1.65 to about 1.75 at a 550 nanometer wavelength and an elastic modulus of greater than or equal to about 5.5 gigapascals; and at least one of a first coating layer on a first side of the polymer film and a second coating layer on a side opposite the first side of the polymer film.
Abstract:
A composition for preparing an article including a polyimide or poly(imide-amide) copolymer, the composition including (1) a solution including at least one of (i) a polymer including at least one selected from a structural unit represented by Chemical Formula 1 and a structural unit represented by Chemical Formula 2; and (ii) a copolymer including at least one selected from a structural unit represented by Chemical Formula 1 and a structural unit represented by Chemical Formula 2, and a structural unit represented by Chemical Formula 3, and (2) a metallic salt soluble in the solution of the polymer and/or the copolymer, wherein the metallic salt is a salt of a metal selected from a Group 1 element, a Group 11 element, a Group 13 element, and a Group 14 element: wherein in Chemical Formulae 1 to 3, A, B, D, and E are the same as defined in the detailed description.
Abstract:
A poly(imide-amide) copolymer includes: an imide structural unit which is a reaction product of a first diamine and a dianhydride, and an amide structural unit which is a reaction product of a second diamine and a diacyl halide, wherein each of the first diamine and the second diamine includes 2,2′-bis-trifluoromethyl-4,4′-biphenyldiamine, and at least one of the first diamine and the second diamine further includes a compound represented by Chemical Formula 1, wherein the dianhydride includes 3,3′,4,4′-biphenyltetracarboxylic dianhydride and 4,4′-hexafluoroisopropylidene diphthalic anhydride, wherein the diacyl halide includes terephthaloyl chloride (TPCl), and wherein an amount of the compound represented by Chemical Formula 1 is less than or equal to about 10 mole percent based on the total amount of the first diamine and the second diamine: NH2-A-NH2 Chemical Formula 1 wherein in Chemical Formula 1, A is the same as described in the detailed description.
Abstract:
A conductive paste may include a conductive powder, metallic glass, a metal precursor including an element forming a solid solution with the metallic glass, and an organic vehicle, and an electronic device and a solar cell may include an electrode formed using the conductive paste.
Abstract:
According to example embodiments, a metallic glass includes aluminum (Al), a first element group, and a second element group. The first element group includes at least one of a transition metal and a rare earth element. The second element group includes at least one of an alkaline metal, an alkaline-earth metal, a semi-metal, and a non-metal. The second element group and aluminum have an electronegativity difference of greater than or equal to about 0.25. The second element group is included less than or equal to about 3 at % of the metallic glass, based on the total amount of the aluminum (Al), the first element group, and the second element group. A conductive paste and/or an electrode of an electronic device may be formed using the metallic glass.
Abstract:
A transparent conductor includes a metallic glass, and a method of manufacturing a transparent conductor includes: preparing a metallic glass or a mixture comprising the metallic glass; and firing the metallic glass or the mixture comprising the metallic glass at a predetermined temperature higher than a glass transition temperature of the metallic glass.