Abstract:
A Dynamic Vision Sensor (DVS) pose-estimation system includes a DVS, a transformation estimator, an inertial measurement unit (IMU) and a camera-pose estimator based on sensor fusion. The DVS detects DVS events and shapes frames based on a number of accumulated DVS events. The transformation estimator estimates a 3D transformation of the DVS camera based on an estimated depth and matches confidence-level values within a camera-projection model such that at least one of a plurality of DVS events detected during a first frame corresponds to a DVS event detected during a second subsequent frame. The IMU detects inertial movements of the DVS with respect to world coordinates between the first and second frames. The camera-pose estimator combines information from a change in a pose of the camera-projection model between the first frame and the second frame based on the estimated transformation and the detected inertial movements of the DVS.
Abstract:
An event filtering device and a motion recognition device using thereof are provided. The motion recognition device includes an emitter configured to emit an infrared ray in a pattern; a detector configured to detect events in a visible ray area and an infrared ray area; a filter configured to determine whether at least one portion of the detected events is detected using the infrared ray in the pattern, and filter the detected events based on a result of the determination; and a motion recognizer configured to perform motion recognition based on a detected event accepted by the filter.
Abstract:
A synapse array based on a static random access memory (SRAM), a pulse shaper circuit, and a neuromorphic system are provided. The synapse array includes a plurality of synapse circuits. At least one synapse circuit among the plurality of synapse circuits includes at least one bias transistor and at least two cut-off transistors, and the at least one synapse circuit is configured to charge a membrane node of a neuron circuit connected with the at least one synapse circuit using a sub-threshold leakage current that passed through the at least one bias transistor.
Abstract:
A proximity sensor and proximity sensing method using a change in light quantity of a reflected light are disclosed. The proximity sensor may include a quantity change detection unit which detects a change in a quantity of reflected light which is output light which has been reflected by an object, where an intensity of the output light changes, and a proximity determination unit which determines a proximity of the object to the quantity change detection unit based on a change in the intensity of the output light and the detected change in the quantity of the reflected light.
Abstract:
An image adjustment apparatus includes a receiver which is configured to receive a first input image of an object which is time-synchronously captured and a second input image in which a motion event of the object is sensed time-asynchronously, and an adjuster which is configured to adjust the first input image and the second input image.
Abstract:
An image adjustment apparatus includes a receiver which is configured to receive a first input image of an object which is time-synchronously captured and a second input image in which a motion event of the object is sensed time-asynchronously, and an adjuster which is configured to adjust the first input image and the second input image.
Abstract:
A three-dimensional (3D) image sensor includes a first substrate having an upper pixel. The upper pixel includes a photoelectric element and first and second photogates connected to the photoelectric element. A second substrate includes a lower pixel, which corresponds to the upper pixel, that is spaced apart from the first substrate in a vertical direction. The lower pixel includes a first transfer transistor that transmits a first signal provided by the first photogate. A first source follower generates a first output signal in accordance with the first signal. A second transfer transistor transmits a second signal provided by the second photogate. A second source follower generates a second output signal in accordance with the second signal. First and second bonding conductors are disposed between the first and second substrates and electrically connect the upper and lower pixels.
Abstract:
Disclosed is an image adjustment apparatus including a receiver which is configured to receive a first input image of an object which is time-synchronously captured and a second input image in which a motion event of the object is sensed time-asynchronously, and an adjuster which is configured to adjust the first input image and the second input image.
Abstract:
An event detecting device may include an event signal generator configured to output a plurality of event signals, each including a first data and a second data having mutually complementary attributes and respective address data indicating positions of pixels having output the first data and the second data, a data manager configured to store one of the first data and the second data of a first one of the plurality of event signals and the respective address data in a buffer as first sub data when only one of the first data and the second data of the first one of the plurality of event signals includes the event information, and an output signal generator configured to generate an output signal using the first sub data and a second sub data when the second sub data, different from the first sub data, is stored in the buffer.
Abstract:
A pixel includes a photoelectric device, a current readout unit configured to detect an electric current flowing in the photoelectric device to generate an input voltage, an event determination unit configured to determine an event occurrence and an event type responsive to the input voltage, and configured to output an event detection signal, and an event output unit configured to store the event detection signal for an event-storage period and configured to output the stored event detection signal responsive to an expiration of the event-storage period.