Abstract:
A display device includes a substrate including a display area and a non-display area, a first wiring at the non-display area of the substrate, a second wiring on a layer that is different from the first wiring at the non-display area of the substrate, an inorganic insulating layer on the first wiring and the second wiring, a pad on the inorganic insulating layer, and connected to a first end of the first wiring, a contact bridge on the inorganic insulating layer, and connecting the second wiring to a second end of the first wiring, an electrostatic electrode on the inorganic insulating layer between the pad and the contact bridge, a first organic insulating layer covering the contact bridge and the electrostatic electrode, and exposing the pad, a first upper wiring on the first organic insulating layer, and overlapping the contact bridge and the electrostatic electrode, and a second organic insulating layer on the first upper wiring.
Abstract:
A transistor array panel includes a transistor disposed on a substrate. The transistor includes a gate electrode, a source electrode, a drain electrode, a semiconductor, and a top electrode. The top electrode is disposed on and overlaps the semiconductor, and is electrically connected to the source electrode.
Abstract:
A method of manufacturing a polysilicon (poly-Si) layer, a method of manufacturing an organic light-emitting display apparatus using the method, and an organic light-emitting display apparatus manufactured by using the method. The method includes forming an amorphous silicon (a-Si) layer on a substrate having first and second areas, thermally treating the a-Si layer to partially crystallize the a-Si layer into a partially crystallized Si layer, removing a thermal oxide layer through a thermal treatment, selectively irradiating the first areas with laser beams to crystallize the partially crystallized Si layer.
Abstract:
A method of manufacturing a polysilicon (poly-Si) layer, a method of manufacturing an organic light-emitting display apparatus using the method, and an organic light-emitting display apparatus manufactured by using the method. The method includes forming an amorphous silicon (a-Si) layer on a substrate having first and second areas, thermally treating the a-Si layer to partially crystallize the a-Si layer into a partially crystallized Si layer, removing a thermal oxide layer through a thermal treatment, selectively irradiating the first areas with laser beams to crystallize the partially crystallized Si layer.
Abstract:
A display device includes: a substrate including a display area configured to display images and a non-display area around the display area; a plurality of driving voltage lines in the display area; a plurality of initialization voltage lines in the display area; a plurality of driving voltage transmission lines in the non-display area and configured to transmit a driving voltage to the driving voltage line, and including a first driving voltage transmission line and a second driving voltage transmission line adjacent to each other; an initialization voltage transmission line in the non-display area and configured to transmit an initialization voltage to the initialization voltage line; and a bridge connecting the first driving voltage transmission line and the second driving voltage transmission line and overlapping the initialization voltage transmission line.
Abstract:
A display device includes: a substrate including a display area configured to display images and a non-display area around the display area; a plurality of driving voltage lines in the display area; a plurality of initialization voltage lines in the display area; a plurality of driving voltage transmission lines in the non-display area and configured to transmit a driving voltage to the driving voltage line, and including a first driving voltage transmission line and a second driving voltage transmission line adjacent to each other; an initialization voltage transmission line in the non-display area and configured to transmit an initialization voltage to the initialization voltage line; and a bridge connecting the first driving voltage transmission line and the second driving voltage transmission line and overlapping the initialization voltage transmission line.
Abstract:
An organic light-emitting display and a method of manufacturing the organic light-emitting display are disclosed. In one embodiment, the organic light-emitting display includes: i) a pixel electrode disposed on a substrate, ii) an opposite electrode disposed opposite to the pixel electrode, iii) an organic emission layer disposed between the pixel electrode and the opposite electrode; a light-scattering portion disposed between the substrate and the organic emission layer, including a plurality of scattering patterns for scattering light emitted from the organic emission layer in insulating layers having different refractive indexes. The display may further include a plurality of light absorption portions disposed between the light-scattering portion and the organic emission layer to correspond to the scattering patterns.
Abstract:
A method of manufacturing a polysilicon (poly-Si) layer, a method of manufacturing an organic light-emitting display apparatus using the method, and an organic light-emitting display apparatus manufactured by using the method. The method includes forming an amorphous silicon (a-Si) layer on a substrate having first and second areas, thermally treating the a-Si layer to partially crystallize the a-Si layer into a partially crystallized Si layer, removing a thermal oxide layer through a thermal treatment, selectively irradiating the first areas with laser beams to crystallize the partially crystallized Si layer.