Abstract:
A display substrate includes a base substrate, a data line disposed on the base substrate, a gate line crossing the data line, a first insulation layer disposed on the base substrate, an active pattern disposed on the first insulation layer and comprising a channel comprising an oxide semiconductor, a source electrode connected to the channel, and a drain electrode connected to the channel, a second insulation layer disposed on the active pattern, and contacting to the source electrode and the drain electrode, a gate electrode disposed on the second insulation layer, and overlapping with the channel, a passivation layer disposed on the gate electrode and the second insulation layer, and a pixel electrode electrically connected to the drain electrode through a first contact hole formed through the passivation layer and the second insulation layer.
Abstract:
A thin film transistor (TFT), method of manufacturing the TFT and a flat panel display having the TFT are disclosed. In one aspect, the TFT comprises a substrate and an active layer formed over the substrate, wherein the active layer is formed of oxide semiconductor, and wherein the active layer includes two opposing sides. The TFT also comprises source and drain regions formed at the opposing sides of the active layer, a first insulating layer formed over the active layer, a gate electrode formed over the active layer, a second insulating layer formed covering the first insulation layer and the gate electrode, and a first conductive layer formed on the source and drain regions and contacting the second insulating layer.
Abstract:
A thin film transistor substrate includes a base substrate, an active pattern disposed on the base substrate, a gate insulation pattern disposed on the active pattern, a gate electrode disposed on the gate insulation pattern and overlapping the channel, and a light-blocking pattern disposed between the base substrate and the active pattern and having a size greater than the active pattern. The active pattern includes a source electrode, a drain electrode, and a channel disposed between the source electrode and the drain electrode.
Abstract:
A thin film transistor includes a bottom gate electrode, a top gate electrode and an active pattern. The top gate electrode includes a transparent conductive material and overlaps with the bottom gate electrode. A boundary of the bottom gate electrode and a boundary of the top gate electrode are coincident with each other in a cross-sectional view. The active pattern includes a source portion, a drain portion and a channel portion disposed between the source portion and the drain portion. The channel portion overlaps with the bottom gate electrode and the top gate electrode.
Abstract:
A thin film transistor (TFT), method of manufacturing the TFT and a flat panel display having the TFT are disclosed. In one aspect, the TFT comprises a substrate and an active layer formed over the substrate, wherein the active layer is formed of oxide semiconductor, and wherein the active layer includes two opposing sides. The TFT also comprises source and drain regions formed at the opposing sides of the active layer, a first insulating layer formed over the active layer, a gate electrode formed over the active layer, a second insulating layer formed covering the first insulation layer and the gate electrode, and a first conductive layer formed on the source and drain regions and contacting the second insulating layer.
Abstract:
A thin film transistor (TFT) array substrate includes a substrate, a gate electrode, a gate line, a first data line, and a second data line on the substrate, a gate insulating layer that covers the gate electrode and the gate line and includes a first opening that exposes a portion of the first data line and a second opening that exposes a portion of the second data line, an active layer disposed on the gate insulating layer so that at least one portion of the active layer overlaps the gate electrode, a drain electrode and a source electrode that extend from opposite sides of the active layer, a pixel electrode that extends from the drain electrode, and a connection wiring that extends from the source electrode, and connects the first data line to the second data line through the first and second openings of the gate insulating layer.
Abstract:
A blind display device includes a plurality of curved display panels, a support, and a plurality of rotators. Each of the curved display panels includes a curved display area between a flat display area and a bezel area. The support guides movement of the curved display panels. The rotators couple corresponding ones of the curved display panels to the support and rotate corresponding ones of the curved display panels.
Abstract:
A thin film transistor including a gate electrode, a semiconductor layer, a gate insulating layer, a source electrode, a drain electrode and a graphene pattern. The semiconductor layer overlaps with the gate electrode. The gate insulating layer is disposed between the gate electrode and the semiconductor layer. The source electrode overlaps with the semiconductor layer. The drain electrode overlaps with the semiconductor layer. The drain electrode is spaced apart from the source electrode. The graphene pattern is disposed between the semiconductor layer and at least one of the source electrode and the drain electrode.
Abstract:
A thin film transistor (TFT), method of manufacturing the TFT and a flat panel display having the TFT are disclosed. In one aspect, the TFT comprises a substrate and an active layer formed over the substrate, wherein the active layer is formed of oxide semiconductor, and wherein the active layer includes two opposing sides. The TFT also comprises source and drain regions formed at the opposing sides of the active layer, a first insulating layer formed over the active layer, a gate electrode formed over the active layer, a second insulating layer formed covering the first insulation layer and the gate electrode, and a first conductive layer formed on the source and drain regions and contacting the second insulating layer.
Abstract:
A display substrate includes a base substrate, a data line disposed on the base substrate, a gate line crossing the data line, a first insulation layer disposed on the base substrate, an active pattern disposed on the first insulation layer and comprising a channel comprising an oxide semiconductor, a source electrode connected to the channel, and a drain electrode connected to the channel, a second insulation layer disposed on the active pattern, and contacting to the source electrode and the drain electrode, a gate electrode disposed on the second insulation layer, and overlapping with the channel, a passivation layer disposed on the gate electrode and the second insulation layer, and a pixel electrode electrically connected to the drain electrode through a first contact hole formed through the passivation layer and the second insulation layer.