Abstract:
A thin film transistor substrate includes a gate electrode disposed on a substrate; a semiconductor layer disposed on the substrate that partially overlaps the gate electrode and includes an oxide semiconductor material; and a source electrode and a drain electrode disposed on the semiconductor layer, where the drain electrode is spaced apart from the source electrode. The source electrode and the drain electrode each include a barrier layer and a main wiring layer, the a main wiring layer is disposed on the barrier layer, and the barrier layer includes a first metal layer disposed on the semiconductor layer, and a second metal layer disposed on the first metal layer.
Abstract:
A display substrate includes a switching element disposed in a display region that is electrically connected to a gate line, a data line, and a first electrode in a peripheral region adjacent to the display region that includes a first conductive pattern formed from a first conductive layer that includes a same material as the gate line, a first line connecting part disposed in the peripheral region that includes the first conductive pattern, a second conductive pattern that overlaps the first conductive pattern and formed, an organic layer that partially exposes the second conductive pattern, and a third conductive pattern electrically connected to the second conductive pattern that contacts the partially exposed second conductive pattern, and a fourth conductive pattern that electrically connects the first conductive pattern of the pad part and the third conductive pattern of the first line connecting part.
Abstract:
Embodiments of the present invention relate to a thin film transistor and a manufacturing method of a display panel, and include forming a gate line including a gate electrode on a substrate, forming a gate insulating layer on the gate electrode, forming an intrinsic semiconductor on the gate insulating layer, forming an extrinsic semiconductor on the intrinsic semiconductor, forming a data line including a source electrode and a drain electrode on the extrinsic semiconductor, and plasma-treating a portion of the extrinsic semiconductor between the source electrode and the drain electrode to form a protection member and ohmic contacts on respective sides of the protection member. Accordingly, the process for etching the extrinsic semiconductor and forming an inorganic insulating layer for protecting the intrinsic semiconductor may be omitted such that the manufacturing process of the display panel may be simplified, manufacturing cost may be reduced, and productivity may be improved.
Abstract:
A display substrate includes a switching element disposed in a display region that is electrically connected to a gate line, a data line, and a first electrode in a peripheral region adjacent to the display region that includes a first conductive pattern formed from a first conductive layer that includes a same material as the gate line, a first line connecting part disposed in the peripheral region that includes the first conductive pattern, a second conductive pattern that overlaps the first conductive pattern and formed, an organic layer that partially exposes the second conductive pattern, and a third conductive pattern electrically connected to the second conductive pattern that contacts the partially exposed second conductive pattern, and a fourth conductive pattern that electrically connects the first conductive pattern of the pad part and the third conductive pattern of the first line connecting part.
Abstract:
According to an exemplary embodiment, a display substrate includes a gate metal pattern comprising a gate electrode, an active pattern disposed on the gate pattern and a source metal pattern disposed on the active pattern. The source metal pattern includes a first lower pattern disposed on the active pattern, a second lower pattern disposed on the first lower pattern, a low-resistance metal pattern disposed on the second lower pattern, and an upper pattern disposed on the low-resistance metal pattern. The first lower pattern, the second lower pattern, and the upper pattern each include a material that is the same.
Abstract:
A display substrate includes a base substrate, a common line on the base substrate, a first insulation layer covering the common line and having a first insulating material, a conductive pattern on the first insulation layer and including a source electrode and a drain electrode, a second insulation layer covering the drain electrode and the common line, and including a lower second insulation layer having a second insulating material and an upper second insulation layer having the first insulating material, a first electrode electrically connected to the drain electrode through a first contact hole in the second insulation layer, and a second electrode electrically connected to the common line through a second contact hole in the first and second insulation layers. The upper and lower second insulation layers on the drain electrode have a first hole and a second hole respectively that form the first contact hole.
Abstract:
A display substrate includes a data pad on a base substrate, a first buffer layer which covers the data pad, a second buffer layer pattern which is disposed on the first buffer layer and separated from the data pad in a plan view, an active layer on the second buffer layer pattern, a gate insulation layer pattern on the active layer, both ends of the active layer exposed by the gate insulation layer pattern, and a gate electrode on the gate insulation layer pattern.
Abstract:
A thin film transistor includes a gate electrode, an active pattern over the gate electrode and including an oxide semiconductor, an etch-stop layer covering the active pattern, a source electrode on the etch-stop layer, a drain electrode on the etch-stop layer and spaced from the source electrode, and an active protection pattern between the etch-stop layer and the active pattern and electrically coupled to the source electrode and the drain electrode.