Abstract:
A collection optics system for a spectrometer and a Raman spectral system including the collection optics system is provided. The collection optics system is configured to selectively collect a Raman signal from scattered light output from a target object, the collection optics system includes a non-imaging collection unit configured to collect the Raman signal and output the Raman signal, the non-imaging collection unit including an entrance surface on which the scattered light is incident and an exit surface through which the Raman signal is output, and a Raman filter provided on a portion of the entrance surface of the non-imaging collection unit and configured to block the scattered light including a fluorescence signal. Therefore, the collection optics system may suppress reception of the fluorescence signal of the scattered light and selectively collect the Raman signal.
Abstract:
An optical sensor is disclosed. The optical sensor may include a substrate, a topological insulator layer formed on the substrate, an oxide layer formed on the topological insulator layer, a graphene layer stacked on the oxide layer, and a dielectric layer covering the graphene layer.
Abstract:
Provided are a nanostructure and an optical device including the nanostructure. The nanostructure is formed on a two-dimensional material layer such as graphene and includes nanopatterns having different shapes. The nanopatterns may include a first nanopattern and a second nanopattern and may be spherical; cube-shaped; or poly-pyramid-shaped, including a triangular pyramid shape; or polygonal pillar-shaped.
Abstract:
Provided are an optical nano-antenna including a tunable material layer and methods of manufacturing and operating the optical nano-antenna. The optical nano-antenna includes a substrate; and a plurality of material layers sequentially laminated on the substrate. The plurality of material layers include at least one tunable material layer and at least one slot. A first tunable material layer and a metal layer are sequentially laminated on the substrate, and a first slot is formed in the metal layer. A metal layer and a first tunable material layer are sequentially laminated on the substrate, and a first slot is formed in the metal layer. A first tunable material layer, a metal layer, and a second tunable material layer are sequentially laminated on the substrate, and a first slot is formed in the metal layer. A second slot tilted with respect to the first slot is formed in the metal layer.
Abstract:
Provided are a nanostructure and an optical device including the nanostructure. The nanostructure is formed on a two-dimensional material layer such as graphene and includes nanopatterns having different shapes. The nanopattern may include a first nanopattern and a second nanopattern and may be spherical; cube-shaped; or poly-pyramid-shaped, including a triangular pyramid shape; or polygonal pillar-shaped.
Abstract:
Provided is an optical apparatus using reflection geometry. The optical apparatus includes a lens element disposed to face an object to be measured, a light source generating an incident beam that passes through the lens element to be incident on the object, and a photodetector receiving light that is scattered by the object. The incident beam is obliquely incident on the object off an optical center axis of the lens element, without passing through the optical center axis. The scattered light is transmitted to the photodetector by passing through the optical center axis of the focusing lens element and a region therearound.
Abstract:
Provided is a surface-enhanced Raman scattering (SERS) patch configured to be brought into contact with an object and amplify Raman light generated from the object that is irradiated by laser light. The SERS patch includes a flexible substrate including a first surface facing the object and a second surface opposite to the first surface, a SERS layer provided on the first surface and configured to amplify the Raman light generated from the object based on surface plasmons, and a metalens provided on the first surface or the second surface of the flexible substrate, the metalens being configured to focus at least one of the laser light and the amplified Raman light in a propagation direction thereof.
Abstract:
Provided are an optical device and a method of controlling the direction of light from an optical device. The optical device includes: a substrate; a metal layer on the substrate; a first slot which is provided in the metal layer; and at least one light source provided in the first slot, wherein light is emitted from the at least one light source in the direction of the top part of the first slot or the bottom part of the first slot.
Abstract:
A method of forming an amorphous carbon monolayer (ACM) and an electronic device including the ACM are provided. The method includes forming the ACM on a surface of a germanium (Ge) substrate via a chemical vapor deposition (CVD) process. The CVD process includes injecting a reaction gas including carbon-containing gas and hydrogen (H2) gas in to a reaction chamber containing the Ge substrate, wherein a partial pressure of the H2 gas in the reaction chamber may range from 1 Torr to 30 Torr.
Abstract:
A semiconductor device, a method for manufacturing the same, and an electronic device including the same are provided. The semiconductor device includes a first transistor and a second transistor. The first transistor includes a first channel layer and a first ion gel. The second transistor includes a second channel layer and a second ion gel. The first channel layer and the second channel layer may include, for example, graphene. The first ion gel and the second ion gel include different ionic liquids. The first ion gel and the second ion gel include different cations and/or different anions. One of the first transistor and the second transistor is a p-type transistor, and the other one is an n-type transistor. The combination of the first transistor and the second transistor constitutes an inverter.