Abstract:
A tunable laser device is provided. The tunable laser device includes an active layer configured to generate first light by a first source; first and second reflective layers spaced apart from each other having the active layer disposed between the first reflective layer and the second reflective layer to form a resonance cavity; and a variable refractive index unit in the resonance cavity and having a refractive index being variable according to a second source, the second source being different from the first source.
Abstract:
A light interconnection device includes a metal-insulator-metal (MIM) waveguide including first and second metal layers and a dielectric layer provided between the first and second metal layers, and a plasmonic antenna including a slot penetrating through the second metal layer.
Abstract:
According to an aspect of an exemplary embodiment, an authentication apparatus for authenticating an object includes an input coupler configured to receive incident light and generate surface plasmons from the incident light; and an output coupler configured to output a speckle pattern based on the surface plasmons.
Abstract:
A multi-wavelength surface plasmon laser that simultaneously emits surface plasmons having a large number of wavelengths and includes an active layer whose thickness changes with position, and a metal cavity whose length changes with position so that light of different wavelengths is emitted according to position. Surface plasmons are generated at the interface between a metal layer and a semiconductor layer in response to the light of different wavelengths. The surface plasmons having different wavelengths may be resonated in the metal cavity whose length changes with position and may be emitted to the outside.
Abstract:
An optical device including slots and an apparatus employing the optical device are provided. An optical unit device for selectively transmitting electromagnetic waves of a wavelength range, includes a material layer including slots. A gap between the slots has a distance such that the optical unit device has a Q-factor of about 5 or more.
Abstract:
Provided are a speckle-based authentication apparatus, an authentication system that includes the speckle-based authentication apparatus, and an authentication method using the speckle-based authentication apparatus. The speckle-based authentication apparatus includes an optical source configured to radiate light onto an object that is placed apart from the optical source; and a detector configured to detect a speckle pattern generated from the object in response to the light being radiated onto the object and detect location information of the object. Thus, the object is authenticated by comparing the speckle pattern detected by the detector with a speckle pattern stored in advance.
Abstract:
A light filter and a spectrometer including the light filter are disclosed. The light filter includes a plurality of filter units having different resonance wavelengths, wherein each of the plurality of filter units includes a cavity layer configured to output light of constructive interference, a Bragg reflection layer provided on a first surface of the cavity layer, and a pattern reflection layer provided on a second surface of the cavity layer opposite to the first surface and configured to cause guided mode resonance of light incident on the pattern reflection layer, the pattern reflection layer including a plurality of reflection structures that are periodically arranged.
Abstract:
A light filter and a spectrometer including the light filter are disclosed. The light filter includes a plurality of filter units having different resonance wavelengths, wherein each of the plurality of filter units includes a cavity layer configured to output light of constructive interference, a Bragg reflection layer provided on a first surface of the cavity layer, and a pattern reflection layer provided on a second surface of the cavity layer opposite to the first surface and configured to cause guided mode resonance of light incident on the pattern reflection layer, the pattern reflection layer including a plurality of reflection structures that are periodically arranged.
Abstract:
Provided are an optical nano-antenna including a tunable material layer and methods of manufacturing and operating the optical nano-antenna. The optical nano-antenna includes a substrate; and a plurality of material layers sequentially laminated on the substrate. The plurality of material layers include at least one tunable material layer and at least one slot. A first tunable material layer and a metal layer are sequentially laminated on the substrate, and a first slot is formed in the metal layer. A metal layer and a first tunable material layer are sequentially laminated on the substrate, and a first slot is formed in the metal layer. A first tunable material layer, a metal layer, and a second tunable material layer are sequentially laminated on the substrate, and a first slot is formed in the metal layer. A second slot tilted with respect to the first slot is formed in the metal layer.
Abstract:
A surface plasmon polariton modulator capable of locally varying a physical property of a dielectric material to control a surface plasmon polariton. The surface plasmon polariton modulator includes a dielectric layer, including first and second dielectric portions, which is interposed between two metal layers. The second dielectric portion has a refractive index which varies with an electric field, a magnetic field, heat, a sound wave, or a chemical and/or biological operation applied thereto. The surface plasmon polariton modulator is configured to control one of an advancing direction, an intensity, a phase, or the like of a surface plasmon using an electric signal. The surface plasmon polariton modulator can operate as a surface plasmon polariton multiplexer or a surface plasmon polariton demultiplexer.