Abstract:
Method and apparatus for leakage signal cancellation in a simultaneous transmit and receive RF system includes: generating a digital transmit signal for transmission from the system; receiving a receive signal produced by reflection of the transmit signal from an object or generated by a second RF system; adaptively filtering the transmit signal by an adaptive finite input response (FIR) filter; calculating filter coefficients for the adaptive FIR filter in real-time at a different sampling rate; adaptively inputting the calculated filter coefficients to the adaptive FIR filter to generate a cancellation signal in real-time; and applying the cancellation signal to the receive signal to cancel leakage in the receive signal to generate an optimum receive signal.
Abstract:
System and method for signal modulation. In one embodiment, a circuit includes a channel for carrying an analog RF signal, a phase offset circuit on the channel, and configured to receive a phase code for modifying the analog RF signal to produce a modified RF signal, and a feedforward cancellation path coupled in parallel to the phase offset circuit for canceling a portion of the modified analog signal.
Abstract:
A delta-sigma modulator (DSM) includes: a first summation circuit coupled to an input signal for subtracting an error feedback signal from the input signal; a tunable signal transfer function coupled to the first summation circuit for setting a desired pole in a frequency response of the DSM; a second summation circuit coupled to the tunable signal transfer function for adding a noise transfer function to an output of the tunable signal transfer function; and a quantizer coupled to the second summation circuit for quantizing an output of the second summation circuit to generate an output of the DSM. The output of the DSM is used as feedback to the first summation circuit as the error feedback signal, and the tunable signal transfer function is dynamically tuned to allow selecting and tuning a center frequency and a bandwidth of the DSM.
Abstract:
System and method for signal modulation. In one embodiment, a circuit includes a channel for carrying an analog RF signal, a phase offset circuit on the channel, and configured to receive a phase code for modifying the analog RF signal to produce a modified RF signal, and a feedforward cancellation path coupled in parallel to the phase offset circuit for canceling a portion of the modified analog signal.
Abstract:
A system and method for allocating resources receive one or more resource requests describing tasks, each of the one or more resource requests having a request priority, a requested configuration type, and a requestor identifier. In a winner-take-all circuit, all of the existing resource priorities within each configuration of the requested configuration type are compared to determine a highest-priority task occupying each assignment. In a loser-take-all circuit, one or more current highest resource priorities of each configuration within the requested configuration type, which are output from the winner-take-all circuit associated with the requested resource assignment, each of the one or more current resources having a current priority, are compared. One of the one or more current resource configurations within the requested configuration type having the lowest current priority is identified as the lowest-priority current resource configuration. The requested configuration type is allocated to the selected resource request if the request priority is higher than the lowest current priority configuration output from the loser-take-all circuit. The method further comprises continuing to allocate the requested configuration type to the lowest-priority current resource tasks currently occupying the lowest current priority configuration within the requested configuration if the lowest current priority configuration within the requested configuration is higher than or equal to the request priority.
Abstract:
A beamforming system includes a plurality of channelizers and a channel switching module in signal communication with the channelizers. Each channelizer is configured to receive a respective input radio frequency signal and to generate a plurality of respective channels in response to downsampling the respective input radio frequency signal. The channel switching module includes a channel combining circuit configured to selectively combine a common channel generated by each channelizer to form at least one steered analog beam.
Abstract:
Embodiments of a system and method for runtime creation, assignment, deployment and updating of arbitrary radio waveform techniques for a radio waveform generation device are generally described herein. In some embodiments, a parser is arranged to parse packet data files to generate channel properties associated with at least one of a plurality of techniques. A user application may be coupled to the parser and arranged to process the channel properties into channelized waveform data according to the at least one of the plurality of techniques. A packetizer may be coupled to the user application and arranged to packetize the channelized waveform data. A digital-to-analog converter may be arranged to convert the channelized waveform data to analog RF signals representing the waveform corresponding to the at least one of the plurality of techniques.
Abstract:
An RF communication system includes a wideband receiver for receiving an RF signal; a wideband receive signal path for processing the received RF signal, a wideband transmit signal path for processing a transmit RF signal to be transmitted; a wideband transmitter for transmitting the transmit RF signal at a selected transmit frequency and a selected transmit polarization; and a processor for controlling a plurality of beam forming circuits for performing signal processing and waveform generation, wherein the processor maximizes an effective radiated power (ERP) of the communication system within a predetermined ERP limit by switching the wideband transmitter between at least one of multiple transmit frequencies and multiple transmit polarizations to form an aggregate, time-averaged signal as the transmit RF signal.
Abstract:
A digital receiver includes a digital synthesizer that generates a local oscillating (LO) signal at a selected frequency, and a signal mixer that receives an input signal and generates a mixed output signal in response to shifting a phase of the input signal based on the frequency of the LO signal. A multi-mode dynamic channelizer is selectively operable in a first mode and a second mode. The first mode generates a plurality of individual channels having a channel size defined by a bandwidth and a gain, and the second mode generates a parallelization of a selected channel. In response to operating in the second mode, the multi-mode dynamic channelizer adjusts at least one of the bandwidth and the gain of the selected channel based on the mixed output signal to change the channel size of the selected channel.
Abstract:
A system includes a first simulated processing system having a first clock and a second simulated processing system having a second clock. The first and second processing systems may operate asynchronously. A synchronization bridge may coordinate executing of the first synchronized processing system and the second synchronized processing system to synchronize the time of execution of the first and second simulated processing systems and messaging between the first and second processing systems. The first and second processing systems may be simulated processing systems.