Abstract:
A wearable device may include a sensor system capable of obtaining physiological from a user's body. Some wearable devices may include a substance delivery system. A sensor system of a wearable device may include at least one “bio-assurance sensor” capable of obtaining biometric data that may be used to identify a user. For example, the bio-assurance sensor may be used to ensure that the wearable device is not removed from the user's body and/or placed on or in another user's body. In some examples, the wearable device may be used with a second device, such as a smart phone, that includes at least one “authentication sensor,” such as a fingerprint sensor, that also may be used to identify a user. However, in some implementations the wearable device may include at least one authentication sensor.
Abstract:
Breathprint sensor systems for verifying the identity of a person using gases produced by the person are disclosed. The breathprint sensor systems include one or more sensors having first response characteristics to compounds in gases and one or more processors being configured to receive a set of test data provided by the one or more first sensors based on an exposure of the one or more first sensors to gases produced by a person and determine whether or not the set of test data verifies the identity of the person. Some aspects of the disclosure relate to a smart inhaler system using a breathprint sensor to assist in delivery of drugs to users through inhalation. Methods for operating breathprint sensor and smart inhaler systems and computer-readable media for implementing the methods are also disclosed.
Abstract:
A wearable device may include a sensor system capable of obtaining physiological from a user's body. Some wearable devices may include a substance delivery system. A sensor system of a wearable device may include at least one “bio-assurance sensor” capable of obtaining biometric data that may be used to identify a user. For example, the bio-assurance sensor may be used to ensure that the wearable device is not removed from the user's body and/or placed on or in another user's body. In some examples, the wearable device may be used with a second device, such as a smart phone, that includes at least one “authentication sensor,” such as a fingerprint sensor, that also may be used to identify a user. However, in some implementations the wearable device may include at least one authentication sensor.
Abstract:
Techniques disclosed herein provide for increased accuracy of information regarding the administration of medicine via an inhaler by obtaining data from a variety of data sources, including a visual sensor of the inhaler. Data can then be fused to make a determination of the effectiveness of how the medicine was administered, and an indication of the determined effectiveness can be relayed to another device.
Abstract:
Disclosed are devices and methods for detecting activation of an electronic device, including a biomedical and biometric device. The electronic device can operate in a low-power mode until it is determined that the electronic device is in close proximity to or in contact with a body, and activated. The electronic device can include a first sensor including a first capacitance sensor, a second sensor, and a controller coupled to the first sensor and the second sensor. The controller can receive a first signal from the first sensor and determine that the electronic device is in close proximity to or in contact with a body based on the first signal, and receive a second signal from the second sensor and determine that the electronic device is activated based on one or both of the first signal and the second signal. The electronic device can transition from the low-power mode to an active mode in response to determining that the electronic device is activated.
Abstract:
A biometric measuring device for obtaining biometric measurements on a limb or digit, such as a finger. The biometric measuring device may include a rollable sleeve that is rollable along a longitudinal axis of the limb or digit and multiple biometric sensors attached to the rollable sleeve such that the biometric sensors are positioned on the rollable sleeve to enable the sleeve to be rolled.
Abstract:
Breathprint sensor systems for verifying the identity of a person using gases produced by the person are disclosed. The breathprint sensor systems include one or more sensors having first response characteristics to compounds in gases and one or more processors being configured to receive a set of test data provided by the one or more first sensors based on an exposure of the one or more first sensors to gases produced by a person and determine whether or not the set of test data verifies the identity of the person. Some aspects of the disclosure relate to a smart inhaler system using a breathprint sensor to assist in delivery of drugs to users through inhalation. Methods for operating breathprint sensor and smart inhaler systems and computer-readable media for implementing the methods are also disclosed.
Abstract:
Described herein are subcutaneous medication delivery applicators and adhesive patches with one or more openings in the patches that designate one or more desired injection sites for subcutaneous injection of a medication. The medication delivery applicator and the adhesive patch may both include circuitry and wireless short-range communications interfaces that allow for the two devices to communicate with one another in order to determine if they are pre-associated in some manner, such as would be the case if both devices were packaged in the same injection kit. The medication delivery applicator may have some form of safety interlock that is only disengaged by the circuitry upon verifying that the two devices are pre-associated in some manner. Various other implementations are described as well.
Abstract:
A wearable device may include a sensor system capable of obtaining physiological from a user's body. Some wearable devices may include a substance delivery system. A sensor system of a wearable device may include at least one “bio-assurance sensor” capable of obtaining biometric data that may be used to identify a user. For example, the bio-assurance sensor may be used to ensure that the wearable device is not removed from the user's body and/or placed on or in another user's body. In some examples, the wearable device may be used with a second device, such as a smart phone, that includes at least one “authentication sensor,” such as a fingerprint sensor, that also may be used to identify a user. However, in some implementations the wearable device may include at least one authentication sensor.
Abstract:
Methods, devices, systems, and non-transitory processor-readable storage media are disclosed for determining one or more biometric properties of a subject using multiple sensors positioned along a flexible backing. At least one processor of the multi-sensor device may be configured to receive output signals from the multiple sensors, identify at least one output signal from the received output signals that exhibit measurements of a targeted biological structure, determine the one or more biometric properties of the subject based on the identified at least one output signal received from at least one of the multiple sensors, and provide the determined one or more biometric properties.