Abstract:
Certain aspects of the present disclosure relate to communication systems, and more particularly, to improving performance for sounding reference signal (SRS) antenna switching in carrier aggregation (CA). A method is provided, that may be performed by a user equipment (UE) for wireless communications. The method includes determining one or more band combinations that share an antenna switch and sending a list of one or more bands in the one or more band combinations to a base station (BS). The BS receives the list and schedules the UE based on the received list.
Abstract:
Methods, systems, and devices for wireless communication are described that support time mask techniques for shortened transmission time intervals (sTTIs) that may enhance low latency communications. Time masks may be identified and applied for transmissions that use sTTIs, in a manner that provides increased portions of sTTI durations having higher transmission power, and thus increase the likelihood of successful reception of such transmissions at a receiver. In some cases, a transmitter, such as a user equipment (UE), may identify one or more sTTIs for transmissions of a first wireless service (e.g., an ultra-reliable low-latency communication (URLLC) service). An sTTI may be identified based on a duration of a TTI associated with the first wireless service being below a threshold duration (e.g., a TTI duration of less than 1 ms may be identified as an sTTI).
Abstract:
Methods, systems, and devices for wireless communication are described that support dynamic transient period configurations for shortened transmission time intervals (sTTIs). A transient period may be configured within uplink transmissions such that protection is enabled for reference signals and data. For example, a user equipment (UE) may receive a resource grant from a base station for an uplink transmission, where the uplink transmission includes at least a first reference signal and a transmission time interval (TTI) that includes data and a second reference signal. The UE may identify a type of the reference signals and data, and may determine a priority based on the identified types of reference signals and data. The UE may then configure a transient period that overlaps with the first reference signal, the TTI, or both, based on the priority.
Abstract:
Methods, systems, and devices for wireless communication are described that support time mask techniques for shortened transmission time intervals (sTTIs) that may enhance low latency communications. Time masks may be identified and applied for transmissions that use sTTIs, in a manner that provides increased portions of sTTI durations having higher transmission power, and thus increase the likelihood of successful reception of such transmissions at a receiver. In some cases, a transmitter, such as a user equipment (UE), may identify one or more sTTIs for transmissions of a first wireless service (e.g., an ultra-reliable low-latency communication (URLLC) service). An sTTI may be identified based on a duration of a TTI associated with the first wireless service being below a threshold duration (e.g., a TTI duration of less than 1 ms may be identified as an sTTI).
Abstract:
An RFIC configuration for reduced antenna trace loss is disclosed. In an exemplary embodiment, an apparatus includes a primary RFIC and a secondary RFIC that is configured to receive analog signals from at least two antennas. The secondary RFIC is configured to process selected analog signals received from at least one antenna to generate an analog output that is input to the primary RFIC.
Abstract:
The present disclosure includes systems and methods for operating a wireless communication system in multiple modes. The system is configured in a first mode when a transmission interference in a receiver of a wireless device is below a first threshold. The system is configured in one or more intermediate modes when the transmission interference is above the first threshold and below a second threshold. The system is configured in a second mode when the transmission interference is above the second threshold. The one or more intermediate modes activate interference management processes and the wireless device transmits data and receives data simultaneously. In some embodiments, transmission interference may be based on an SINR measurement.
Abstract:
The various embodiments include a dual-SIM-dual-active (DSDA) device and methods for implementing robust receive (Rx) processing to resolve radio frequency coexistence interference between two subscriptions operating on the DSDA device. The DSDA device may detect when a subscription (the “aggressor”) de-senses the other subscription (the “victim”) as a result of the aggressor's transmissions, and in response, implement robust Rx processing to mitigate the effects of de-sense on the victim while causing minimal impact to the aggressor.
Abstract:
Methods, systems, and devices for wireless communication are described. A user equipment (UE) may group multiple carriers with transmission time intervals (TTIs) having different durations into different physical uplink control channel (PUCCH) groups. The UE may reserve power per each PUCCH group. Alternatively, the UE may reserve power per each TTI duration across the one or more PUCCH groups.
Abstract:
An apparatus including: at least one differential amplifier configured to amplify a radio frequency signal; a mixer configured to mix the radio frequency signal from the at least one differential amplifier with a local oscillator signal; and a low-pass filter coupled to the mixer, the low-pass filter includes a capacitor and at least one variable resistor configured to tune the low-pass filter.
Abstract:
An apparatus including: at least one differential amplifier configured to amplify a radio frequency signal; a mixer configured to mix the radio frequency signal from the at least one differential amplifier with a local oscillator signal; and a low-pass filter coupled to the mixer, the low-pass filter includes a capacitor and at least one variable resistor configured to tune the low-pass filter.