摘要:
Aspects provide techniques and apparatus for wireless communications (e.g., for saving power when performing control channel processing when in an idle mode or in a “PDCCH only” in connected mode). An exemplary method includes performing, using a processor, a first type of control channel processing in a first connection state using a firmware image stored in internal memory of the processor, wherein performing control channel processing comprises accessing memory external to the processor, determining one or more conditions for entering a low-power mode (LPM) associated with the processor are satisfied, entering the LPM based on the determination, wherein entering into the LPM includes at least one of disabling or disallowing access to the external memory based on entering the LPM, and performing, using the processor, a second type of control channel processing using the firmware image stored in internal memory of the processor based on entering the LPM.
摘要:
Methods for enabling a mobile device to efficiently resolve coexistence issues in a DSDA configuration by utilizing a feed forward strategy to avoid hand-shaking between software-implemented operations and firmware. The mobile device may employ a dual subscription, dual active (or “DSDA”) configuration in which two or more subscriptions may be associated with concurrently active communications, such as voice or data calls. The mobile device may be configured to predict activity associated with the concurrently active subscriptions, such as determining operations likely to be performed in a future time period. Such predicted activity information, as well as predefined actions and priority information, may be provided to a library common to both subscriptions. Firmware of the subscriptions may use the common library to detect current conflicts, such as desense, as well as actions to perform to resolve coexistence issues, such as blanking operations.
摘要:
Various embodiments provide methods, devices, and non-transitory processor-readable storage media for mitigating local oscillator (LO) spur interference between radio access technologies (RATs) operating on a multi-active communication device. The various embodiments provide methods, devices, and non-transitory processor-readable storage media to determine residual frequency error for a multi-active communication device and generate LO spur handling tables that may enable the multi-active communication device to compensate for the residual frequency error. A multi-active communication device may mitigate LO spurs by applying mitigation techniques to one or more RATs according to the LO spur handling tables. A multi-active communication device may mitigate LO spurs by turning off a LOs for one or more RATs according to the LO spur handling tables.
摘要:
Methods for enabling a mobile device to efficiently resolve coexistence issues in a DSDA configuration by utilizing a feed forward strategy to avoid hand-shaking between software-implemented operations and firmware. The mobile device may employ a dual subscription, dual active (or “DSDA”) configuration in which two or more subscriptions may be associated with concurrently active communications, such as voice or data calls. The mobile device may be configured to predict activity associated with the concurrently active subscriptions, such as determining operations likely to be performed in a future time period. Such predicted activity information, as well as predefined actions and priority information, may be provided to a library common to both subscriptions. Firmware of the subscriptions may use the common library to detect current conflicts, such as desense, as well as actions to perform to resolve coexistence issues, such as blanking operations.
摘要:
The various embodiments include a dual-SIM-dual-active (DSDA) device and methods for implementing robust receive (Rx) processing to resolve radio frequency coexistence interference between two subscriptions operating on the DSDA device. The DSDA device may detect when a subscription (the “aggressor”) de-senses the other subscription (the “victim”) as a result of the aggressor's transmissions, and in response, implement robust Rx processing to mitigate the effects of de-sense on the victim while causing minimal impact to the aggressor.
摘要:
The various embodiments include a dual-SIM-dual-active (DSDA) device and methods for implementing pipelining of operation registration data and conflict checking to predict radio frequency co-existence interference between two subscriptions operating on the DSDA device. The DSDA device may predict when a subscription (the “aggressor”) de-senses the other subscription (the “victim”) as a result of the aggressor's scheduled operations, by analyzing the conflicting operation registration data prior to the scheduled operation execution time. The operation registration data is received and analyzed close in time to the scheduled execution of the operation to limit the possibility of changes in the operation schedule and registration data.
摘要:
The various embodiments include a dual-SIM-dual-active (DSDA) device and methods for implementing pipelining of operation registration data and conflict checking to predict radio frequency co-existence interference between two subscriptions operating on the DSDA device. The DSDA device may predict when a subscription (the “aggressor”) de-senses the other subscription (the “victim”) as a result of the aggressor's scheduled operations, by analyzing the conflicting operation registration data prior to the scheduled operation execution time. The operation registration data is received and analyzed close in time to the scheduled execution of the operation to limit the possibility of changes in the operation schedule and registration data.