Abstract:
Methods, systems, and devices for wireless communication are described. Some wireless communications systems may support communication between a user equipment (UE) and a base station on multiple carriers (i.e., carrier aggregation). In some cases, the UE may be scheduled to transmit uplink signals on the different component carriers during transmission time intervals (TTIs) that have different durations. In such cases, it may be appropriate for the UE to determine a maximum transmit power limit relating to the amount of power used for the uplink transmissions on the multiple carriers. As described herein, the UE may identify one of the component carriers as a reference component carrier, and the UE may determine the maximum transmit power limit for a duration of a TTI associated with the reference component carrier. The UE may then transmit on the multiple carriers in compliance with the maximum transmit power limit.
Abstract:
Certain aspects of the present disclosure provide techniques for handling collisions between PUSCH and sounding reference signal (SRS) on additional SRS symbols in an uplink subframe using carrier aggregation. The techniques provide rules that a user equipment (UE) may apply to decide if and when to drop or apply power scaling to SRS or PUSCH transmissions scheduled on overlapping time resources.
Abstract:
Methods, systems, and devices for wireless communication are described. Some wireless communications systems may support communication between a user equipment (UE) and a base station on multiple carriers (i.e., carrier aggregation). In some cases, the UE may be scheduled to transmit uplink signals on the different component carriers during transmission time intervals (TTIs) that have different durations. In such cases, it may be appropriate for the UE to determine a maximum transmit power limit relating to the amount of power used for the uplink transmissions on the multiple carriers. As described herein, the UE may identify one of the component carriers as a reference component carrier, and the UE may determine the maximum transmit power limit for a duration of a TTI associated with the reference component carrier. The UE may then transmit on the multiple carriers in compliance with the maximum transmit power limit.
Abstract:
Various embodiments in the disclosure provide methods implemented by a processor executing on a mobile communication device to dynamically determining whether the power saved by powering down the RF chain between the end of the last reception activities and the beginning of the next reception activities will exceed the power expended to reinitialize the RF chain's components and registers for the next reception activities. Based on this determination, the device processor may configure the RF chain either to power down fully, as in conventional implementations, or to enter a low-power mode in which power is maintained to the power rails supplying the memory registers storing RF communication data, thereby avoiding the power surge of restarting the registers and part of the power drain associated with writing the communication data back into the registers. In some embodiments, the mobile communication device may be a multi-SIM device.
Abstract:
Methods, systems, and devices for wireless communication are described that support time mask techniques for shortened transmission time intervals (sTTIs) that may enhance low latency communications. Time masks may be identified and applied for transmissions that use sTTIs, in a manner that provides increased portions of sTTI durations having higher transmission power, and thus increase the likelihood of successful reception of such transmissions at a receiver. In some cases, a transmitter, such as a user equipment (UE), may identify one or more sTTIs for transmissions of a first wireless service (e.g., an ultra-reliable low-latency communication (URLLC) service). An sTTI may be identified based on a duration of a TTI associated with the first wireless service being below a threshold duration (e.g., a TTI duration of less than 1 ms may be identified as an sTTI).
Abstract:
Methods, systems, and devices for wireless communication are described that support dynamic transient period configurations for shortened transmission time intervals (sTTIs). A transient period may be configured within uplink transmissions such that protection is enabled for reference signals and data. For example, a user equipment (UE) may receive a resource grant from a base station for an uplink transmission, where the uplink transmission includes at least a first reference signal and a transmission time interval (TTI) that includes data and a second reference signal. The UE may identify a type of the reference signals and data, and may determine a priority based on the identified types of reference signals and data. The UE may then configure a transient period that overlaps with the first reference signal, the TTI, or both, based on the priority.
Abstract:
Methods, systems, and devices for wireless communication are described that support time mask techniques for shortened transmission time intervals (sTTIs) that may enhance low latency communications. Time masks may be identified and applied for transmissions that use sTTIs, in a manner that provides increased portions of sTTI durations having higher transmission power, and thus increase the likelihood of successful reception of such transmissions at a receiver. In some cases, a transmitter, such as a user equipment (UE), may identify one or more sTTIs for transmissions of a first wireless service (e.g., an ultra-reliable low-latency communication (URLLC) service). An sTTI may be identified based on a duration of a TTI associated with the first wireless service being below a threshold duration (e.g., a TTI duration of less than 1 ms may be identified as an sTTI).
Abstract:
Methods, systems, and devices for wireless communication are described. A user equipment (UE) may group multiple carriers with transmission time intervals (TTIs) having different durations into different physical uplink control channel (PUCCH) groups. The UE may reserve power per each PUCCH group. Alternatively, the UE may reserve power per each TTI duration across the one or more PUCCH groups.
Abstract:
Methods, systems, and devices for wireless communication are described. In some cases, a user equipment (UE) may be scheduled to transmit uplink signals on different carriers during transmission time intervals (TTIs) that have different durations. As such, a TTI on a first carrier (e.g., a reference carrier) may overlap with multiple shortened TTIs (sTTIs) on a second carrier (e.g., a non-reference carrier). Using the techniques described herein, the UE may select a calibration point (or a gain index) for uplink transmissions at the beginning of the TTI on the reference carrier based on an amount of power reserved for expected power increases during the TTI. As such, when the UE has to update its transmit power for an uplink transmission during an sTTI on the second carrier, the UE may apply a digital back-off from a power associated with the calibration point.
Abstract:
Various embodiments include methods for managing antennas on an aerial robotic vehicle used for wireless communications. A processor may receive position information identifying a location of the aerial robotic vehicle, determine whether to switch from using a first antenna to using a second antenna for active communications of the aerial robotic vehicle based on the position information, and switch active communications from using the first antenna to using the second antenna in response to determining that active communications of the aerial robotic vehicle should switch from using the first antenna to using the second antenna. The processor may make the determination using information from a database, which may correlate aerial robotic vehicle position to whether to use a particular one of the first and second antennas for active communications. The determination may also be based on a comparison of signal qualities obtained by both antennas.