Abstract:
Certain aspects of the present disclosure relate to methods and apparatus for generating and communicating reference signals. Certain aspects provide a method for communicating reference signals. The method includes selecting a demodulation reference sequence (DMRS) of a plurality of DMRSs for transmission in a synchronization signal block (SSB) based on a half-frame in which the SSB is transmitted. The method further includes transmitting the selected DMRS in the SSB.
Abstract:
In order to improve cell detection in NR, a user equipment apparatus performs a PSS search on a first frequency raster from a group of frequency rasters. When the UE detects a PSS on the first frequency raster corresponding to a PSS hypothesis, the UE searches for an SS on a second frequency raster based at least on part on the detected PSS hypothesis on the first frequency raster. The UE may search for a plurality of hypotheses of the SS corresponding to the detected PSS hypothesis on the first frequency raster and the second frequency raster. The second frequency raster may be selected from the group of frequency rasters based at least in part on the detected PSS hypothesis or the first frequency raster on which the PSS was detected.
Abstract:
A configurable new radio (NR) resource scheduling and indication transmission procedure that may be executed by a base station and a user equipment (UE) is disclosed. For example, a base station may determine a number of synchronization signal blocks available for transmission of non-scheduling data, and transmit an indication signifying at least one of the number of synchronization signal blocks or a location of each of the number of synchronization signal blocks. Further, a UE may receiving an indication signifying at least one of a number of synchronization signal blocks or a location of each of the number of synchronization signal blocks. The UE may further determine one or more resource elements forming the number of synchronization signal blocks where non-scheduling data has been scheduled for transmission. The UE may receive the non-scheduling data within the one or more resource elements forming the number of synchronization signal blocks.
Abstract:
Certain aspects of the present disclosure provide techniques for assisted power control for an uplink signal transmitted during a RACH procedure. A UE may determine a transmit power for transmitting a message during a RACH procedure with a secondary BS, based at least in part, on communication between the UE and a primary BS. The UE may transmit the message to the second BS during the RACH procedure based, at least in part, on the determined transmit power.
Abstract:
In aspects, a user equipment may be configured to determine a preconfigured frequency band that is less than an available system bandwidth. The UE may be further configured to perform an initial access procedure with a base station using the preconfigured frequency band. The initial access procedure may include a random access channel (RACH) procedure.
Abstract:
A first apparatus may transmit, to a user equipment (UE), on a control channel, one or more indications of one or more beam indexes corresponding to one or more beams. The first apparatus may transmit, to the UE, one or more reference signals through the one or more beams corresponding to the one or more beam indexes. The reference signals may be used by the UE to select a best subarray and/or receive combiner for communication with the first apparatus.
Abstract:
In an aspect of the disclosure, a method, a computer-readable medium, and an apparatus are provided. The apparatus may be configured to send, in a first network, a scheduling request (SR) associated with a second network. The apparatus may be further configured to receive an uplink grant based on the SR. The apparatus may be further configured to send, in the second network, uplink transmission based on the uplink grant. In an another aspect of the disclosure, a method, a computer-readable medium, and an apparatus are provided. The apparatus may be configured to receive, in a first network, a scheduling request (SR) associated with a user equipment (UE). The apparatus may be further configured to generate an uplink grant based on the SR. The apparatus may be further configured to send, in a second network, the uplink grant to the UE.
Abstract:
A method, an apparatus, and a computer-readable medium for wireless communication are provided. The apparatus may be a UE. The apparatus may receive a message from a base station. The message may indicate a first dedicated resource for downlink transmission, and the first dedicated resource may be associated with a scheduled downlink transmission from the base station. The apparatus may determine a second dedicated resource for uplink transmission based on the first dedicated resource for downlink transmission indicated in the message. The second dedicated resource for uplink transmission may be associated with the scheduled downlink transmission. The apparatus may determine whether to transmit an information message, to be used by the base station for transmitting the scheduled downlink transmission, on the second dedicated resource.
Abstract:
A method, an apparatus, and a computer program product for wireless communication are provided. The apparatus configures a number of channel measurement periods for an n number of user equipments (UEs), determines a number of subsets of the n UEs based on a pattern, and schedules each of the number of subsets of the n UEs for transmission of a signal during a different one of the number of channel measurement periods.
Abstract:
A method, an apparatus, and a computer program product for wireless communication are provided. In one configuration, the apparatus sends a transmission requesting a peer discovery signal and indicating whether the transmission includes a unicast request or a multicast request. In addition, the apparatus receives at least one peer discovery signal response based on the transmission. In another configuration, the apparatus receives a transmission requesting a peer discovery signal and indicating whether the transmission includes a unicast request or a multicast request. In addition, the apparatus sends a peer discovery signal response in response to the received transmission and on resources determined based on the indication whether the transmission includes a unicast request or a multicast request.