Abstract:
Control of volume in bioreactors and associated systems is generally described. Feeding and/or sampling strategies can be employed, in some embodiments, such that the working volume within the bioreactor remains substantially constant.
Abstract:
Control of humidity in chemical reactors, and associated systems and methods, are generally described. In certain embodiments, the humidity within gas transport conduits and chambers can be controlled to inhibit unwanted condensation within gas transport pathways. By inhibiting condensation within gas transport pathways, clogging of such pathways can be limited (or eliminated) such that transport of gas can be more easily and controllably achieved. In addition, strategies for purging condensed liquid from chemical reactor systems are also described.
Abstract:
Control of humidity in chemical reactors, and associated systems and methods, are generally described. In certain embodiments, the humidity within gas transport conduits and chambers can be controlled to inhibit unwanted condensation within gas transport pathways. By inhibiting condensation within gas transport pathways, clogging of such pathways can be limited (or eliminated) such that transport of gas can be more easily and controllably achieved. In addition, strategies for purging condensed liquid from chemical reactor systems are also described.
Abstract:
Control of humidity in chemical reactors, and associated systems and methods, are generally described. In certain embodiments, the humidity within gas transport conduits and chambers can be controlled to inhibit unwanted condensation within gas transport pathways. By inhibiting condensation within gas transport pathways, clogging of such pathways can be limited (or eliminated) such that transport of gas can be more easily and controllably achieved. In addition, strategies for purging condensed liquid from chemical reactor systems are also described.
Abstract:
Contrary to conventional wisdom, which holds that light-emitting diodes (LEDs) should be cooled to increase efficiency, the LEDs disclosed herein are heated to increase efficiency. Heating an LED operating at low forward bias voltage (e.g., V
Abstract:
Conventional approaches to integrating waveguides within standard electronic processes typically involve using a dielectric layer, such as polysilicon, single-crystalline silicon, or silicon nitride, within the in-foundry process or depositing and patterning a dielectric layer in the backend as a post-foundry process. In the present approach, the back-end of the silicon handle is etched away after in-foundry processing to expose voids or trenches defined using standard in-foundry processing (e.g., complementary metal-oxide-semiconductor (CMOS) processing). Depositing dielectric material into a void or trench yields an optical waveguide integrated within the front-end of the wafer. For example, a shallow trench isolation (STI) layer formed in-foundry may serve as a high-resolution patterning waveguide template in a damascene process within the front end of a die or wafer. Filling the trench with a high-index dielectric material yields a waveguide that can guide visible and/or infrared light, depending on the waveguide's dimensions and refractive index contrast.
Abstract:
Control of humidity in chemical reactors, and associated systems and methods, are generally described. In certain embodiments, the humidity within gas transport conduits and chambers can be controlled to inhibit unwanted condensation within gas transport pathways. By inhibiting condensation within gas transport pathways, clogging of such pathways can be limited (or eliminated) such that transport of gas can be more easily and controllably achieved. In addition, strategies for purging condensed liquid from chemical reactor systems are also described.
Abstract:
Semiconductor devices, such as photonics devices, employ substantially curved-shaped Silicon-Germanium (SiGe) structures and are fabricated using zero-change CMOS fabrication process technologies. In one example, a closed-loop resonator waveguide-coupled photodetector includes a silicon resonator structure formed in a silicon substrate, interdigitated n-doped well-implant regions and p-doped well-implant regions forming multiple silicon p-n junctions around the silicon resonator structure, and a closed-loop SiGe photocarrier generation region formed in a pocket within the interdigitated n-doped and p-doped well implant regions. The closed-loop SiGe region is located so as to substantially overlap with an optical mode of radiation when present in the silicon resonator structure, and traverses the multiple silicon p-n junctions around the silicon resonator structure. Electric fields arising from the respective p-n silicon junctions significantly facilitate a flow of the generated photocarriers between electric contact regions of the photodetector.
Abstract:
Conventional approaches to integrating waveguides within standard electronic processes typically involve using a dielectric layer, such as polysilicon, single-crystalline silicon, or silicon nitride, within the in-foundry process or depositing and patterning a dielectric layer in the backend as a post-foundry process. In the present approach, the back-end of the silicon handle is etched away after in-foundry processing to expose voids or trenches defined using standard in-foundry processing (e.g., complementary metal-oxide-semiconductor (CMOS) processing). Depositing dielectric material into a void or trench yields an optical waveguide integrated within the front-end of the wafer. For example, a shallow trench isolation (STI) layer formed in-foundry may serve as a high-resolution patterning waveguide template in a damascene process within the front end of a die or wafer. Filling the trench with a high-index dielectric material yields a waveguide that can guide visible and/or infrared light, depending on the waveguide's dimensions and refractive index contrast.
Abstract:
Conventional approaches to integrating waveguides within standard electronic processes typically involve using a dielectric layer, such as polysilicon, single-crystalline silicon, or silicon nitride, within the in-foundry process or depositing and patterning a dielectric layer in the backend as a post-foundry process. In the present approach, the back-end of the silicon handle is etched away after in-foundry processing to expose voids or trenches defined using standard in-foundry processing (e.g., complementary metal-oxide-semiconductor (CMOS) processing). Depositing dielectric material into a void or trench yields an optical waveguide integrated within the front-end of the wafer. For example, a shallow trench isolation (STI) layer formed in-foundry may serve as a high-resolution patterning waveguide template in a damascene process within the front end of a die or wafer. Filling the trench with a high-index dielectric material yields a waveguide that can guide visible and/or infrared light, depending on the waveguide's dimensions and refractive index contrast.