Abstract:
Control of humidity in chemical reactors, and associated systems and methods, are generally described. In certain embodiments, the humidity within gas transport conduits and chambers can be controlled to inhibit unwanted condensation within gas transport pathways. By inhibiting condensation within gas transport pathways, clogging of such pathways can be limited (or eliminated) such that transport of gas can be more easily and controllably achieved. In addition, strategies for purging condensed liquid from chemical reactor systems are also described.
Abstract:
A waveguide-coupled Silicon Germanium (SiGe) photodetector. A p-n silicon junction is formed in a silicon substrate by an n-doped silicon region and a p-doped silicon region, a polysilicon rib is formed on the silicon substrate to provide a waveguide core for an optical mode of radiation, and an SiGe pocket is formed in the silicon substrate along a length of the polysilicon rib and contiguous with the p-n silicon junction. An optical mode of radiation, when present, substantially overlaps with the SiGe pocket so as to generate photocarriers in the SiGe pocket. An electric field arising from the p-n silicon junction significantly facilitates a flow of the generated photocarriers through the SiGe pocket. In one example, such photodetectors have been fabricated using a standard CMOS semiconductor process technology without requiring changes to the process flow (i.e., “zero-change CMOS”).
Abstract:
Control of volume in bioreactors and associated systems is generally described. Feeding and/or sampling strategies can be employed, in some embodiments, such that the working volume within the bioreactor remains substantially constant.
Abstract:
Control of volume in bioreactors and associated systems is generally described. Feeding and/or sampling strategies can be employed, in some embodiments, such that the working volume within the bioreactor remains substantially contstant.
Abstract:
Conventional approaches to integrating waveguides within standard electronic processes typically involve using a dielectric layer, such as polysilicon, single-crystalline silicon, or silicon nitride, within the in-foundry process or depositing and patterning a dielectric layer in the backend as a post-foundry process. In the present approach, the back-end of the silicon handle is etched away after in-foundry processing to expose voids or trenches defined using standard in-foundry processing (e.g., complementary metal-oxide-semiconductor (CMOS) processing). Depositing dielectric material into a void or trench yields an optical waveguide integrated within the front-end of the wafer. For example, a shallow trench isolation (STI) layer formed in-foundry may serve as a high-resolution patterning waveguide template in a damascene process within the front end of a die or wafer. Filling the trench with a high-index dielectric material yields a waveguide that can guide visible and/or infrared light, depending on the waveguide's dimensions and refractive index contrast.
Abstract:
Strategies to control the level of dissolved carbon dioxide (CO2) concentrations and/or pH in small volume reactor chambers, and associated articles, systems, and methods, are generally provided. In certain embodiments, the reactor chambers can be configured to contain at least one biological cell.
Abstract:
Control of volume in bioreactors and associated systems is generally described. Feeding and/or sampling strategies can be employed, in some embodiments, such that the working volume within the bioreactor remains substantially constant.
Abstract:
Control of humidity in chemical reactors, and associated systems and methods, are generally described. In certain embodiments, the humidity within gas transport conduits and chambers can be controlled to inhibit unwanted condensation within gas transport pathways. By inhibiting condensation within gas transport pathways, clogging of such pathways can be limited (or eliminated) such that transport of gas can be more easily and controllably achieved. In addition, strategies for purging condensed liquid from chemical reactor systems are also described.
Abstract:
Semiconductor devices, such as photonics devices, employ substantially curved-shaped Silicon-Germanium (SiGe) structures and are fabricated using zero-change CMOS fabrication process technologies. In one example, a closed-loop resonator waveguide-coupled photodetector includes a silicon resonator structure formed in a silicon substrate, interdigitated n-doped well-implant regions and p-doped well-implant regions forming multiple silicon p-n junctions around the silicon resonator structure, and a closed-loop SiGe photocarrier generation region formed in a pocket within the interdigitated n-doped and p-doped well implant regions. The closed-loop SiGe region is located so as to substantially overlap with an optical mode of radiation when present in the silicon resonator structure, and traverses the multiple silicon p-n junctions around the silicon resonator structure. Electric fields arising from the respective p-n silicon junctions significantly facilitate a flow of the generated photocarriers between electric contact regions of the photodetector.
Abstract:
Guided-wave photodetectors based on absorption of infrared photons by mid-bandgap states in non-crystal semiconductors. In one example, a resonant guided-wave photodetector is fabricated based on a polysilicon layer used for the transistor gate in a SOI CMOS process without any change to the foundry process flow (‘zero-change’ CMOS). Mid-bandgap defect states in the polysilicon absorb infrared photons. Through a combination of doping mask layers, a lateral p-n junction is formed in the polysilicon, and a bias voltage applied across the junction creates a sufficiently strong electric field to enable efficient photo-generated carrier extraction and high-speed operation. An example device has a responsivity of more than 0.14 A/W from 1300 to 1600 nm, a 10 GHz bandwidth, and 80 nA dark current at 15 V reverse bias.