Abstract:
A Digital Phase Locked Loop (DPLL), including a Time-to-Digital Converter (TDC) configured generate quantized phase values of a Voltage Controlled Oscillator (VCO) signal; and a frequency estimation circuit configured to receive the quantized phase values, determine wraparound phase of the quantized phase values, and least-squares estimate a frequency based on the quantized phase values and the wraparound phase.
Abstract:
This application discusses, among other things, apparatus and methods for sharing a local oscillator between multiple wireless devices. In certain examples, an apparatus can include a central frequency synthesizer configured to provide a central oscillator signal having a first frequency, a first transmitter, the first transmitter including a first transmit digital-to-time converter (DTC) configured to receive the central oscillator signal and to provide a first transmitter signal having a second frequency, and a first receiver, the first receiver including a first receive DTC configured to receive the central oscillator signal and to provide a first receiver signal having a first receive frequency.
Abstract:
A system for calibrating a digital to time converter (DTC), includes a first DTC configured to receive a first digital input code and generate a first DTC output signal, and a second DTC configured to receive a second digital input code and generate a second DTC output signal. Further, the system includes a delay circuit configured to apply a first delay to the first DTC output signal to generate a first delayed DTC output signal and a phase detector circuit configured to determine a phase difference between the first delayed DTC output signal and the second DTC output signal, thereby generating a phase detector output. In addition, the system includes a calibration circuit configured to adjust the first digital input code of the first DTC to an adjusted first code that minimizes the phase detector output, based on a search algorithm.
Abstract:
Embodiments of a digital-to-time converter (DTC) and methods for generating phase-modulated signals are generally described herein. In some embodiments, a divide by 2N+/−1 operation on an oscillator signal generates first and second divider signals, the first divider signal is sampled to provide a rising-edge correlated signal, a divider unit output signal is sampled to provide a falling edge correlated signal, and either the second divider signal or a delayed version of the second divider signal is provided as the divider unit output signal. A selection between the rising-edge and the falling-edge correlated signals generates edge signals. A fine phase-modulated output signal is generated based on an edge interpolation between a first and second edge signals.
Abstract:
A Digital Phase Locked Loop (DPLL), including a Time-to-Digital Converter (TDC) configured generate quantized phase values of a Voltage Controlled Oscillator (VCO) signal; and a frequency estimation circuit configured to receive the quantized phase values, determine wraparound phase of the quantized phase values, and least-squares estimate a frequency based on the quantized phase values and the wraparound phase.
Abstract:
A calibration system operates to calibrate or correct a digital-to-time converter (DTC) that comprises a detector component and a distortion correction component. The DTC can receive one or more signals and a digital code to generate a modulation signal by controlling an offset of the one or more signals based on the digital code. The detector component can comprise a TDC or another DTC that operates to measure a dynamic behavior in response to detecting nonlinearities of the modulation signal. The distortion correction component can generate a set of distortion data that removes the dynamic behavior from an output of the DTC based on the measurement.
Abstract:
This document discusses apparatus and methods for compensating non-linearity of digital-to-time converters (DTCs). In an example, a wireless device can include a digital-to-time converter (DTC) configured to receive a phase data information from a baseband processor and to provide a first modulation signal for generating a wireless signal, a detector configure to receive the first modulation signal and provide an indication of nonlinearities of the DTC, and a pre-distortion module configured to provide pre-distortion information to the DTC using the indication of nonlinearities.
Abstract:
This document discusses apparatus and methods for compensating non-linearity of digital-to-time converters (DTCs). In an example, a wireless device can include a digital-to-time converter (DTC) configured to receive a phase data information from a baseband processor and to provide a first modulation signal for generating a wireless signal, a detector configure to receive the first modulation signal and provide an indication of nonlinearities of the DTC, and a pre-distortion module configured to provide pre-distortion information to the DTC using the indication of nonlinearities.
Abstract:
This application discusses, among other things, apparatus and methods for sharing a local oscillator between multiple wireless devices. In certain examples, an apparatus can include a central frequency synthesizer configured to provide a central oscillator signal having a first frequency, a first transmitter, the first transmitter including a first transmit digital-to-time converter (DTC) configured to receive the central oscillator signal and to provide a first transmitter signal having a second frequency, and a first receiver, the first receiver including a first receive DTC configured to receive the central oscillator signal and to provide a first receiver signal having a first receive frequency.
Abstract:
This application discusses, among other things, apparatus and methods for sharing a local oscillator between multiple wireless devices. In certain examples, an apparatus can include a central frequency synthesizer configured to provide a central oscillator signal having a first frequency, a first transmitter, the first transmitter including a first transmit digital-to-time converter (DTC) configured to receive the central oscillator signal and to provide a first transmitter signal having a second frequency, and a first receiver, the first receiver including a first receive DTC configured to receive the central oscillator signal and to provide a first receiver signal having a first receive frequency.