Abstract:
Partial self-aligned contact structures are provided. In one aspect, a method of forming a semiconductor device includes: patterning fins in a substrate; forming a gate(s) over the fins, separated from source/drains by first spacers, wherein a lower portion of the gate(s) includes a workfunction-setting metal, and an upper portion of the gate(s) includes a core metal between a metal liner; recessing the metal liner to form divots in the upper portion of the gate(s) in between the first spacers and the core metal; forming second spacers in the divots such that the first spacers and the second spacers surround the core metal in the upper portion of the gate(s); forming lower source/drain contacts in between the first spacers over the source/drains; recessing the lower source/drain contacts to form gaps over the lower source/drain contacts; and forming source/drain caps in the gaps. A semiconductor device is also provided.
Abstract:
Embodiments of the invention are directed to a method of performing fabrication operations to form a nanosheet field effect transistor (FET) device. The fabrication operations include forming a nanosheet stack over a portion of a substrate. A first source or drain (S/D) trench is formed adjacent to a first end of the nanosheet stack. A second S/D trench is formed adjacent to a second end of the nanosheet stack. A region of the substrate is removed to form a bottom dielectric isolation (BDI) cavity in the substrate, wherein the BDI cavity is positioned beneath at least the nanosheet stack, the first S/D trench, and the second S/D trench. The BDI cavity is filled with a dielectric material, thereby forming a BDI region positioned beneath at least the nanosheet stack, the first S/D trench, and the second S/D trench.
Abstract:
A method of fabricating a static random-access memory (SRAM) device includes forming a sacrificial material and replacing the sacrificial material with a metal to form a cross-couple contact on a metal gate stack. A portion of the metal gate stack directly contacts each of a sidewall and an endwall of the cross-couple contact.
Abstract:
A technique relates to forming a self-aligning field effect transistor. A starting punch through stopper comprising a substrate having a plurality of fins patterned thereon, an n-type field effect transistor (NFET) region, a p-type field effect transistor (PFET) region, and a center region having a boundary defect at the interface of the NFET region and the PFET region is first provided. The field effect transistor is then masked to mask the NFET region and the PFET region such that the center region is exposed. A center boundary region is then formed by etching the center region to remove the boundary defect.
Abstract:
A semiconductor device includes a first source/drain region on an upper surface of a semiconductor substrate that extends along a first direction to define a length and a second direction opposite the first direction to define a width. A channel region extends vertically in a direction perpendicular to the first and second directions from a first end contacting the first source/drain region to an opposing second end contacting a second source/drain region. A gate surrounds a channel portion of the channel region, and a first doped source/drain extension region is located between the first source/drain region and the channel portion. The first doped source/drain extension region has a thickness extending along the vertical direction. A second doped source/drain extension region is located between the second source/drain region and the channel portion. The second doped source/drain extension region has a thickness extending along the vertical direction that matches the first thickness.
Abstract:
Partial self-aligned contact structures are provided. In one aspect, a method of forming a semiconductor device includes: patterning fins in a substrate; forming a gate(s) over the fins, separated from source/drains by first spacers, wherein a lower portion of the gate(s) includes a workfunction-setting metal, and an upper portion of the gate(s) includes a core metal between a metal liner; recessing the metal liner to form divots in the upper portion of the gate(s) in between the first spacers and the core metal; forming second spacers in the divots such that the first spacers and the second spacers surround the core metal in the upper portion of the gate(s); forming lower source/drain contacts in between the first spacers over the source/drains; recessing the lower source/drain contacts to form gaps over the lower source/drain contacts; and forming source/drain caps in the gaps. A semiconductor device is also provided.
Abstract:
Partial self-aligned contact structures are provided. In one aspect, a method of forming a semiconductor device includes: patterning fins in a substrate; forming a gate(s) over the fins, separated from source/drains by first spacers, wherein a lower portion of the gate(s) includes a workfunction-setting metal, and an upper portion of the gate(s) includes a core metal between a metal liner; recessing the metal liner to form divots in the upper portion of the gate(s) in between the first spacers and the core metal; forming second spacers in the divots such that the first spacers and the second spacers surround the core metal in the upper portion of the gate(s); forming lower source/drain contacts in between the first spacers over the source/drains; recessing the lower source/drain contacts to form gaps over the lower source/drain contacts; and forming source/drain caps in the gaps. A semiconductor device is also provided.
Abstract:
Gate contact over active layout designs are provided. In one aspect, a method for forming a gate contact over active device includes: forming a device including metal gates over an active area of a wafer, and source/drains on opposite sides of the metal gates offset by gate spacers; recessing the metal gates/gate spacers; forming etch-selective spacers on top of the recessed gate spacers; forming gate caps on top of the recessed metal gates; forming source/drain contacts on the source/drains; forming source/drain caps on top of the source/drain contacts, wherein the etch-selective spacers provide etch selectivity to the gate caps and source/drain caps; and forming a metal gate contact that extends through one of the gate caps, wherein the etch-selective spacers prevent gate-to-source drain shorting by the metal gate contact. Alternate etch-selective configurations are also provided including a claw-shaped source/drain cap design. A gate contact over active device is also provided.
Abstract:
A technique relates to forming a self-aligning field effect transistor. A starting punch through stopper comprising a substrate having a plurality of fins patterned thereon, an n-type field effect transistor (NFET) region, a p-type field effect transistor (PFET) region, and a center region having a boundary defect at the interface of the NFET region and the PFET region is first provided. The field effect transistor is then masked to mask the NFET region and the PFET region such that the center region is exposed. A center boundary region is then formed by etching the center region to remove the boundary defect.
Abstract:
A method of forming field effect transistors (FETs), and forming integrated circuit (IC) chip including the FETs. After forming replacement metal gate (RMG) FinFETs on a surface layer of a silicon on insulator (SOI) wafer, and growing unmerged epitaxially (epi) on the fins, the epi is capped with dielectric and an inter-level dielectric (ILD) layer is formed on the SOI wafer. The said ILD layer is patterned to an upper surface of the epi above encased fins in a timed etch. Then, etching, preferably with an etchant selective to silicon, the epi is opened to, and into, the fins. The resulting orifices are filled with conductive material to form source drain contacts.