Abstract:
A semiconductor chip is described having a functional unit that can execute a first instruction and execute a second instruction. The first instruction is an instruction that multiplies two operands. The second instruction is an instruction that approximates a function according to C0+C1X2+C2X22. The functional unit has a multiplier circuit. The multiplier circuit has: i) a first input to receive bits of a first operand of the first instruction and receive bits of a C1 term of the second instruction; ii) a second input to receive bits of a second operand of the first instruction and receive bits of a X2 term of the second instruction.
Abstract:
A method comprising storing a plurality of entries, each entry of the plurality of entries associated with a portion of a range of input values, each entry of the plurality of entries comprising a set of coefficients defining a power series approximation; selecting first entry of the plurality of entries based on a determination that a floating point input value is within a portion of the range of input values that is associated with the first entry; and calculating an output value by evaluating the power series approximation defined by the set of coefficients of the first entry at the floating point input value.
Abstract:
According to one embodiment, a processor includes an instruction decoder to decode a first instruction to gather data elements from memory, the first instruction having a first operand specifying a first storage location and a second operand specifying a first memory address storing a plurality of data elements. The processor further includes an execution unit coupled to the instruction decoder, in response to the first instruction, to read contiguous a first and a second of the data elements from a memory location based on the first memory address indicated by the second operand, and to store the first data element in a first entry of the first storage location and a second data element in a second entry of a second storage location corresponding to the first entry of the first storage location.
Abstract:
A method comprising storing a plurality of entries, each entry of the plurality of entries associated with a portion of a range of input values, each entry of the plurality of entries comprising a set of coefficients defining a power series approximation; selecting first entry of the plurality of entries based on a determination that a floating point input value is within a portion of the range of input values that is associated with the first entry; and calculating an output value by evaluating the power series approximation defined by the set of coefficients of the first entry at the floating point input value.
Abstract:
A processor includes an instruction schedule and dispatch (schedule/dispatch) unit to receive a single instruction multiple data (SIMD) instruction to perform an operation on multiple data elements stored in a storage location indicated by a first source operand. The instruction schedule/dispatch unit is to determine a first of the data elements that will not be operated to generate a result written to a destination operand based on a second source operand. The processor further includes multiple processing elements coupled to the instruction schedule/dispatch unit to process the data elements of the SIMD instruction in a vector manner, and a power management unit coupled to the instruction schedule/dispatch unit to reduce power consumption of a first of the processing elements configured to process the first data element.
Abstract:
An apparatus and method are described for multi-bit error correction and detection. For example, one embodiment of a processor comprises: error detection logic to detect one or more errors in data when reading the data from a storage device, the data being read from the storage device with parity codes and error correction codes (ECCs); error correction logic to correct the errors detected by the error detection logic; and a matrix usable by both the error detection logic to detect the one or more errors and the error correction logic to correct the errors, the matrix constructed into N regions, each region having M columns forming a geometric sequence, wherein each successive region is a shifted version of a prior region.
Abstract:
According to one embodiment, a processor includes an instruction decoder to decode a first instruction to gather data elements from memory, the first instruction having a first operand specifying a first storage location and a second operand specifying a first memory address storing a plurality of data elements. The processor further includes an execution unit coupled to the instruction decoder, in response to the first instruction, to read contiguous a first and a second of the data elements from a memory location based on the first memory address indicated by the second operand, and to store the first data element in a first entry of the first storage location and a second data element in a second entry of a second storage location corresponding to the first entry of the first storage location.
Abstract:
In an embodiment, a fused multiply-add (FMA) circuit is configured to receive a plurality of input data values to perform an FMA instruction on the input data values. The circuit includes a multiplier unit and an adder unit coupled to an output of the multiplier unit, and a control logic to receive the input data values and to reduce switching activity and thus reduce power consumption of one or more components of the circuit based on a value of one or more of the input data values. Other embodiments are described and claimed.
Abstract:
Systems, apparatuses and methods may provide for technology that in response to an identification that one or more hardware units are to execute on a first type of data format, decomposes a first original floating point number to a plurality of first segmented floating point numbers that are to be equivalent to the first original floating point number. The technology may further in response to the identification, decompose a second original floating point number to a plurality of second segmented floating point numbers that are to be equivalent to the second original floating point number. The technology may further execute a multiplication operation on the first and second segmented floating point numbers to multiply the first segmented floating point numbers with the second segmented floating point numbers.
Abstract:
Systems, apparatuses and methods may provide for technology that in response to an identification that one or more hardware units are to execute on a first type of data format, decomposes a first original floating point number to a plurality of first segmented floating point numbers that are to be equivalent to the first original floating point number. The technology may further in response to the identification, decompose a second original floating point number to a plurality of second segmented floating point numbers that are to be equivalent to the second original floating point number. The technology may further execute a multiplication operation on the first and second segmented floating point numbers to multiply the first segmented floating point numbers with the second segmented floating point numbers.