Abstract:
Embodiments of systems, apparatuses, and methods for chained fused multiply add. In some embodiments, an apparatus includes a decoder to decode a single instruction having an opcode, a destination field representing a destination operand, a first source field representing a plurality of packed data source operands of a first type that have packed data elements of a first size, a second source field representing a plurality of packed data source operands that have packed data elements of a second size, and a field for a memory location that stores a scalar value. A register file having a plurality of packed data registers includes registers for the plurality of packed data source operands that have packed data elements of a first size, the source operands that have packed data elements of a second size, and the destination operand. Execution circuitry executes the decoded single instruction to perform iterations of packed fused multiply accumulate operations by multiplying packed data elements of the sources of the first type by sub-elements of the scalar value, and adding results of these multiplications to an initial value in a first iteration and a result from a previous iteration in subsequent iterations.
Abstract:
Embodiments of systems, apparatuses, and methods for chained fused multiply add. In some embodiments, an apparatus includes a decoder to decode a single instruction having an opcode, a destination field representing a destination operand, a first source field representing a plurality of packed data source operands of a first type that have packed data elements of a first size, a second source field representing a plurality of packed data source operands that have packed data elements of a second size, and a field for a memory location that stores a scalar value. A register file having a plurality of packed data registers includes registers for the plurality of packed data source operands that have packed data elements of a first size, the source operands that have packed data elements of a second size, and the destination operand. Execution circuitry executes the decoded single instruction to perform iterations of packed fused multiply accumulate operations by multiplying packed data elements of the sources of the first type by sub-elements of the scalar value, and adding results of these multiplications to an initial value in a first iteration and a result from a previous iteration in subsequent iterations.
Abstract:
Embodiments of systems, apparatuses, and methods for chained fused multiply add. In some embodiments, an apparatus includes a decoder to decode a single instruction having an opcode, a destination field representing a destination operand, a first source field representing a plurality of packed data source operands of a first type that have packed data elements of a first size, a second source field representing a plurality of packed data source operands that have packed data elements of a second size, and a field for a memory location that stores a scalar value. A register file having a plurality of packed data registers includes registers for the plurality of packed data source operands that have packed data elements of a first size, the source operands that have packed data elements of a second size, and the destination operand. Execution circuitry executes the decoded single instruction to perform iterations of packed fused multiply accumulate operations by multiplying packed data elements of the sources of the first type by sub-elements of the scalar value, and adding results of these multiplications to an initial value in a first iteration and a result from a previous iteration in subsequent iterations.
Abstract:
A processor includes a front end with logic to identify a multiplier, multiplicand, and mathematical mode based upon an instruction. The processor also includes a multiplier circuit to apply Booth encoding to multiply the multiplier and multiplicand. The multiplier circuit includes circuitry to determine leftmost and rightmost partial products of multiplying the multiplier and multiplicand using Booth encoding. The circuitry includes a most significant bit (MSB) array and least significant bit (LSB) array corresponding to the multiplier. The multiplier circuit also includes logic to selectively enable selectors of the circuitry to find partial products based upon the mathematical mode of the instruction.
Abstract:
A processor including a first execution core section clocked to perform execution operations at a first clock frequency, and a second execution core section clocked to perform execution operations at a second clock frequency which is different than the first clock frequency. The second execution core section runs faster and includes a data cache and critical ALU functions, while the first execution core section includes latency-tolerant functions such as instruction fetch and decode units and non-critical ALU functions. The processor may further include an I/O ring which may be still slower than the first execution core section. Optionally, the first execution core section may include a third execution core section whose clock rate is between that of the first and second execution core sections. Clock multipliers/dividers may be used between the various sections to derive their clocks from a single source, such as the I/O clock.
Abstract:
Embodiments of systems, methods, and apparatuses for heterogeneous computing are described. In some embodiments, a hardware heterogeneous scheduler dispatches instructions for execution on one or more plurality of heterogeneous processing elements, the instructions corresponding to a code fragment to be processed by the one or more of the plurality of heterogeneous processing elements, wherein the instructions are native instructions to at least one of the one or more of the plurality of heterogeneous processing elements.
Abstract:
Embodiments of systems, methods, and apparatuses for heterogeneous computing are described. In some embodiments, a hardware heterogeneous scheduler dispatches instructions for execution on one or more plurality of heterogeneous processing elements, the instructions corresponding to a code fragment to be processed by the one or more of the plurality of heterogeneous processing elements, wherein the instructions are native instructions to at least one of the one or more of the plurality of heterogeneous processing elements.
Abstract:
A processor includes a front end with logic to identify a multiplier, multiplicand, and mathematical mode based upon an instruction. The processor also includes a multiplier circuit to apply Booth encoding to multiply the multiplier and multiplicand. The multiplier circuit includes circuitry to determine leftmost and rightmost partial products of multiplying the multiplier and multiplicand using Booth encoding. The circuitry includes a most significant bit (MSB) array and least significant bit (LSB) array corresponding to the multiplier. The multiplier circuit also includes logic to selectively enable selectors of the circuitry to find partial products based upon the mathematical mode of the instruction.
Abstract:
A semiconductor chip is described having a functional unit that can execute a first instruction and execute a second instruction. The first instruction is an instruction that multiplies two operands. The second instruction is an instruction that approximates a function according to C0+C1X2+C2X22. The functional unit has a multiplier circuit. The multiplier circuit has: i) a first input to receive bits of a first operand of the first instruction and receive bits of a C1 term of the second instruction; ii) a second input to receive bits of a second operand of the first instruction and receive bits of a X2 term of the second instruction.
Abstract:
Embodiments of systems, methods, and apparatuses for heterogeneous computing are described. In some embodiments, a hardware heterogeneous scheduler dispatches instructions for execution on one or more plurality of heterogeneous processing elements, the instructions corresponding to a code fragment to be processed by the one or more of the plurality of heterogeneous processing elements, wherein the instructions are native instructions to at least one of the one or more of the plurality of heterogeneous processing elements.