Abstract:
In order to provide a charged particle beam apparatus enabling reduction of deflecting coma aberration in cases such as where wide field-of-view scanning is carried out, a charged particle beam apparatus is provided with an electromagnetic objective lens and a stage on which a sample is placed, wherein the electromagnetic objective lens is provided with the following: a plurality of magnetic paths; an objective lens coil; an opening disposed so as to face the sample; an inner lens deflector disposed more on the objective lens coil side than the end of the opening.
Abstract:
A lower pole piece of an electromagnetic superposition type objective lens is divided into an upper magnetic path and a lower magnetic path. A voltage nearly equal to a retarding voltage is applied to the lower magnetic path. An objective lens capable of acquiring an image with a higher resolution and a higher contrast than a conventional image is provided. An electromagnetic superposition type objective lens includes a magnetic path that encloses a coil, a cylindrical or conical booster magnetic path that surrounds an electron beam, a control magnetic path that is interposed between the coil and sample, an accelerating electric field control unit that accelerates the electron beam using a booster power supply, a decelerating electric field control unit that decelerates the electron beam using a stage power supply, and a suppression unit that suppresses electric discharge of the sample using a control magnetic path power supply.
Abstract:
A charged-particle-beam device is characterized in having a control value for an aligner coil (29) being determined by: a coil current and an electrode applied-voltage at a control value for objectives (30, 31), which is an electromagnetic-field superposition lens; a control value for image-shift coils (27, 28); and the acceleration voltage of the charged-particle-beam. By doing this, it has become possible to avoid image disturbances that occur on images to be displayed at boundaries between charged areas and non-charged areas, and provide a charged-particle-beam device that obtains clear images without any unevenness in brightness.
Abstract:
The invention has an object to provide a charged particle beam device in which it is possible to perform proper beam adjustment while suppressing a decrease in MAM time, with a simple configuration without adding a lens, a sensor, or the like. In order to achieve the above object, according to the invention, there is provided a charged particle beam device including: an optical element which adjusts a charged particle beam emitted from a charged particle source; an adjustment element which adjusts an incidence condition of the charged particle beam with respect to the optical element; and a control device which controls the adjustment element, wherein the control device determines a difference between a first feature amount indicating a state of the optical element based on the condition setting of the optical element, and a second feature amount indicating a state where the optical element reaches based on the condition setting and executes adjustment by the adjustment element when the difference is greater than or equal to a predetermined value.
Abstract:
A scanning electron beam device having: a deflector (5) for deflecting an electron beam (17) emitted from an electron source (1); an objective lens (7) for causing the electron beam to converge; a retarding electrode; a stage (9) for placing a wafer (16); and a controller (15); wherein the stage can be raised and lowered. In the low acceleration voltage region, the controller performs rough adjustment and fine adjustment of the focus in relation to the variation in the height of the wafer using electromagnetic focusing performed through excitation current adjustment of the objective lens. In the high acceleration voltage region, the controller performs rough adjustment of the focus in relation to the variation in the height of the wafer by mechanical focusing performed through raising and lowering of the stage, and performs fine adjustment by electrostatic focusing performed through adjustment of the retarding voltage. It thereby becomes possible to provide a scanning electron beam device that measures, in a highly accurate manner, both the upper part and the bottom part of a groove or a hole having a high aspect ratio.