Abstract:
Provided is an apparatus for preparing a sample including: a sample stage that supports a sample; a focused ion beam column that applies a focused ion beam to the same sample and processes the sample; and an irradiation area setting unit that sets a focused-ion-beam irradiation area including a first irradiation area used to form an observation field irradiated with an electron beam in order to detect backscattered electrons and a second irradiation area used to form a tilted surface tilted with respect to the normal line of the observation field with an angle of 67.5° or more and less than 90°.
Abstract:
Disclosed herein is a method for cross-section processing and observation, and apparatus therefore, the method including: performing a position information obtaining process of observing the entirety of a sample by using an optical microscope or an electron microscope, and of obtaining three-dimensional position coordinate information of a particular observation target object included in the sample; performing a cross-section processing process of irradiating a particular region in which the object is present by using a focused ion beam based on the information, and of exposing a cross section of the region; performing a cross-section image obtaining process of irradiating the cross section by using an electron beam, and of obtaining a cross-section image of a predetermined size region including the object; and performing a three-dimensional image obtaining process of repeating the cross-section processing process and the cross-section image obtaining process at predetermined intervals in a predetermined direction, and of obtaining a three-dimensional image from obtained multiple cross-section images.
Abstract:
A cross-section processing observation apparatus includes an ion beam control unit for controlling a charged particle beam generation-focusing portion and a deflector and including a DAC which converts an input digital signal into an analog signal which is to be input to the deflector, and a field-of-view setting portion for setting a value of a field of view of a charged particle beam where the scanning performed by the deflector is performed on the basis of a set value of a slice amount.
Abstract:
A charged particle beam apparatus for processing a tip end portion of a sample into a needle shape, includes an ion beam irradiation unit that irradiates the tip end portion with ion beams, an electron beam irradiation unit that irradiates the tip end portion with electron beams, a secondary electron detection unit that detects secondary electrons generated at the tip end portion by the irradiation with the electron beams, and an EBSD detection unit that detects diffracted electrons generated at the tip end portion by the irradiation with the electron beams.
Abstract:
A focused ion beam apparatus including: a focused ion beam irradiation mechanism forming first and second cross-sections; a first image generation unit generating a first image, including a reflected electron image or a secondary electron image, of the first and second cross-sections; a second image generation unit generating a second image, including an EDS image or a secondary ion image, of the first and second cross-sections; and a control section causing the second image generation unit to generate the second image of the second cross-section, in a case where the first and second images of the first cross-section are acquired, the first image of the second cross-section is acquired, and the first image of the second cross-section includes a region different from a region representing a specific composition in the first image of the first cross-section.
Abstract:
A cross-section processing and observation method performed by a cross-section processing and observation apparatus, the method comprising: a cross-section processing step of forming a cross-section by irradiating a sample with an ion beam; a cross-section observation step of obtaining an observation image of the cross-section by irradiating the cross-section with an electron beam; and repeating the cross-section processing step and the cross-section observation step so as to obtain observation images of a plurality of cross-sections, wherein, in a case where Energy Dispersive X-ray Spectrometry (EDS) measurement of the cross-section is performed and an X-ray of a specified material is detected, an irradiation condition of the ion beam is changed so as to obtain observation images of a plurality of cross-sections of the specified material, and the cross-section processing and observation of the specified material is performed.
Abstract:
This machining method includes: a machining step of irradiating a sample constituted from a stack of multiple layers with a focused ion beam so as to machine a cross-section of the sample by a predetermined amount; an image generation step of generating an observation image of the cross-section of the sample by irradiating the sample with an electron beam after the machining step is ended; and a specific-layer determination step of determining whether a specific layer of the multiple layers is exposed based on the observation image.
Abstract:
The present invention provides a control method for a charged particle beam device for irradiating a sample in which a plurality of layers is laminated with a focused ion beam to process a cross-section of the sample at a processing angle that is a prescribed angle. The control method includes: an image generation step for irradiating the sample with an electron beam, detecting secondary electrons or reflected electrons generated from the sample, and generating an observation image of a cross-section of the sample based on results of detection; an angle deviation calculation step for calculating the angle deviation between the angle of the cross-section and the processing angle based on the observation image; and a control step for controlling orientation of the sample or a direction of radiation with the electron beam so as to eliminate the angle deviation calculated in the angle deviation calculation step.
Abstract:
A method for observing a biological tissue sample includes: forming a sample block; cutting up the sample block into a plurality of sample pieces and fixing each of the sample pieces to a sample piece placement member to form a plurality of observation samples; specifying an observation target area for performing precise observation; specifying and registering a coordinate of the observation target area on the sample piece for each of the observation samples; milling including irradiating the observation target area of the sample piece with an ion beam using gas as an ion source or a neutral particle beam with reference to the coordinate and exposing an observation surface inside the sample piece; and obtaining a SEM image of the observation surface with a scanning electron microscope.
Abstract:
A cross-section processing-and-observation method includes: a cross-section exposure step of irradiating a sample with a focused ion beam to expose a cross-section of the sample; a cross-sectional image acquisition step of irradiating the cross-section with an electron beam to acquire a cross-sectional image of the cross-section; and a step of repeatedly performing the cross-section exposure step and the cross-sectional image acquisition step along a predetermined direction of the sample at a setting interval to acquire a plurality of cross-sectional images of the sample. In the cross-sectional image acquisition step, a cross-sectional image is acquired under different condition settings for a plurality of regions of the cross-section.