Abstract:
A pitch bearing for coupling a rotor blade to a hub of a wind turbine includes an outer race configured to be coupled to the hub, an inner race rotatable relative to the outer race and configured to be coupled to the rotor blade, and a first plurality of line contact rolling elements. The outer race defines a first outer raceway wall and the inner race defines a first inner raceway wall. The first plurality of line contact rolling elements is disposed between the first inner and outer raceway walls. Each of the plurality of line contact rolling elements defines a predetermined contact angle. The predetermined contact angle is defined as an angle between a reference line extending perpendicular to a longitudinal axis of one of the plurality of line contact rolling elements and a reference line extending parallel to a horizontal plane of the pitch bearing. Further, the predetermined contact angle includes angles between 0 degrees (°) and 90°.
Abstract:
A pitch bearing assembly for a wind turbine may include an outer race and an inner race rotatable relative to the outer race. The inner race may define an inner circumference and may include a plurality of gear teeth around the inner circumference. The inner race may also include a circumferential flange extending at least partially around the inner circumference. In addition, the pitch bearing assembly may include a stiffener coupled to the circumferential flange.
Abstract:
The invention is directed to a rotor blade assembly for a wind turbine designed to mitigate pitch bearing loads. The rotor blade assembly includes a rotor blade, a pitch bearing, and at least one shim plate. The rotor blade includes a body extending between a blade root and a blade tip. The pitch bearing includes an outer race, an inner race, and a plurality of roller elements between the outer race and the inner race. As such, the inner race is rotatable relative to the outer race. The at least one shim plate may be configured between the inner race and the blade root or between the outer race and a hub of the wind turbine so as to mitigate loads experienced by the pitch bearing.
Abstract:
A wind turbine drivetrain is disclosed. The wind turbine drivetrain includes a planetary gearbox. The planetary gearbox includes a carrier rotatably driven at a first input rotational speed, and a planet gear rotatably mounted to the carrier. The planetary gearbox further includes a sun gear rotatably coupled to the planet gear, and a ring gear rotatably coupled to the planet gear. One of the carrier, the sun gear, or the ring gear is selectively rotatably driven at a second input rotational speed. The wind turbine drivetrain further includes an output gear rotatably driven by the planetary gearbox at an output rotational speed, and a motor selectively operable to rotatably drive the one of the carrier, the sun gear, or the ring gear.
Abstract:
A wind turbine drivetrain is disclosed. The wind turbine drivetrain includes a planetary gearbox. The planetary gearbox includes a carrier rotatably driven at a first input rotational speed, and a planet gear rotatably mounted to the carrier. The planetary gearbox further includes a sun gear rotatably coupled to the planet gear, and a ring gear rotatably coupled to the planet gear. One of the carrier, the sun gear, or the ring gear is selectively rotatably driven at a second input rotational speed. The wind turbine drivetrain further includes an output gear rotatably driven by the planetary gearbox at an output rotational speed, and a motor selectively operable to rotatably drive the one of the carrier, the sun gear, or the ring gear.
Abstract:
The present disclosure is directed to a bearing for a wind turbine. The bearing includes an outer race, an inner race, and a radially-split center race configured between the inner race and the outer race. Further, the center race includes a first race portion and a separate second race portion. In addition, the first and second race portions are arranged together in an axial direction. The bearing also includes a first set of rolling elements positioned between the inner race and the center race and a second set of rolling elements positioned between the center race and the outer race.
Abstract:
A pitch bearing for coupling a rotor blade to a hub of a wind turbine includes an outer race configured to be coupled to the hub, an inner race rotatable relative to the outer race and configured to be coupled to the rotor blade, and a first plurality of line contact rolling elements. The outer race defines a first outer raceway wall and the inner race defines a first inner raceway wall. The first plurality of line contact rolling elements is disposed between the first inner and outer raceway walls. Each of the plurality of line contact rolling elements defines a predetermined contact angle. The predetermined contact angle is defined as an angle between a reference line extending perpendicular to a longitudinal axis of one of the plurality of line contact rolling elements and a reference line extending parallel to a horizontal plane of the pitch bearing. Further, the predetermined contact angle includes angles between 0 degrees (°) and 90°.
Abstract:
In one aspect, a dual pitch bearing configuration for coupling a rotor blade to a hub of a wind turbine. The dual pitch bearing configuration including a first pitch bearing and at least one additional pitch bearing disposed axially a distance LB from the first pitch bearing. The dual pitch bearing configuration further including one or more spacers disposed between the first pitch bearing and the at least one additional pitch bearing and extending the distance LB. The dual pitch bearing disposed radially within one of a blade root of the rotor blade, a hub extension or a bearing housing and coupled thereto. The dual pitch bearing configuration minimizing moment loading on the first pitch bearing and the at least one additional pitch bearing. A wind turbine including the dual pitch bearing configuration is further disclosed.
Abstract:
A spacer assembly for a bearing of a wind turbine and/or a bearing assembly for a wind turbine is provided. The bearing assembly includes an outer race, an inner race rotatable relative to the outer race, a plurality of roller elements positioned between the inner and outer race, and a plurality of load-bearing spacers configured between the roller elements. Each of the spacers includes a spacer portion and an extension portion. Thus, each of the spacers is arranged to contact adjacent spacers within the bearing assembly via the extension portion such that the extension portions of the spacers are configured to transfer loads experienced by the bearing assembly rather than the loads passing through the roller elements.
Abstract:
A method for manufacturing a planet gear or a sun gear of a gearbox of a wind turbine includes forming a base of the planet gear via at least one of casting or forging. The base of the planet gear includes an inner circumferential surface and an outer circumferential surface. Therefore, at least one of the inner circumferential surface or the outer circumferential surface of the planet gear includes a plurality of net or near-net gear teeth. The method also includes applying a coating material to at least a portion of the base of the gear and at least a portion of the plurality of gear teeth of the gear via an additive manufacturing process so as to increase a hardness of the portions of the base and the plurality of gear teeth that includes the coating material.