Abstract:
This disclosure includes the description of a braze alloy composition. The braze composition contains nickel, about 5% by weight to about 25% by weight germanium; and about 1% by weight to about 4% by weight boron. The composition has an amorphous structure, and is free of silicon.
Abstract:
According to one embodiment, a monolithic cassette with graded electrical resistivity is presented. The monolithic cassette has a continuous grain structure between a first end and a second end; wherein electrical resistivity of the monolithic cassette is graded such that the resistance varies continuously from the first end to the second end. Methods and compositions for forming the monolithic cassette are also presented.
Abstract:
A composite composition that includes an MCrAlX alloy and a nano-oxide ceramic is disclosed. In the formula, M includes nickel, cobalt, iron, or a combination thereof, and X includes yttrium, hafnium, or a combination thereof, from about 0.001 percent to about 2 percent by weight of the alloy. The amount of the nano-oxide ceramic is greater than about 40 percent, by volume of the composition. A protective covering that includes the composite composition is also disclosed. The protective covering can be attached to a tip portion of a blade with a braze material. A method for joining a protective covering to a tip portion of a blade, and a method for repair of a blade, are also provided.
Abstract:
A brazing structure for an electrochemical cell is described. It includes a nickel or nickel alloy component; a ceramic component; a braze alloy layer, containing an active metal element, between the nickel and the ceramic component, and a barrier layer disposed between the nickel layer and the braze alloy layer. The barrier layer is capable of preventing or minimizing the diffusion of the active metal element into the nickel or nickel alloy component. Electrochemical cells that include such a brazing structure are also described, as are related methods for joining nickel components to ceramic components in the manufacture of thermal batteries.
Abstract:
A composition comprising an yttria-rare earth-doped zirconium oxide is provided that has a tetragonal structure and a formula: YaLnbCexZr1-a-b-xO2-δ where Ln is a mixture of rare earth elements; 0.01≤a≤0.051; 0.01≤b≤0.051 such that Y and each rare earth element is included in the composition in substantially equal molar amounts; 0.05≤(a+b)≤0.07; 0≤x≤0.051; and 0≤δ≤0.05. Methods of forming a coating that includes this composition, along with the resulting coated components, are also provided.
Abstract:
Coated components, along with methods of their formation, are provided. The coated component may include a substrate having a surface and a thermal barrier coating on the surface of the substrate. The thermal barrier coating includes a plurality of elongated surface-connected voids therein, and wherein the thermal barrier coating comprises a plurality of nonspherical particles within a thermal barrier material.
Abstract:
A braze alloy composition for sealing a ceramic component to a metal component in an electrochemical cell is presented. The braze alloy composition includes copper, nickel, and an active metal element. The braze alloy includes nickel in an amount less than about 30 weight percent, and the active metal element in an amount less than about 10 weight percent. An electrochemical cell using the braze alloy for sealing a ceramic component to a metal component in the cell is also provided.
Abstract:
A method for joining a metal component to a ceramic component is presented. The method includes disposing a metallic barrier layer on a metallized portion of the ceramic component, and joining the metal component to the metallized portion of the ceramic component through the metallic barrier layer. The metallic barrier layer comprises nickel and a melting point depressant. The metallic barrier layer is disposed by a screen printing process, followed by sintering the layer at a temperature less than about 1000 degrees Celsius. A sealing structure including a joint between a ceramic component and a metal component is also presented.
Abstract:
A method for joining a ceramic component to a metallic component is described. At least one initial layer of an active metal is applied to one of the joining surfaces, by a cold spray technique. At least one second layer of a nickel-based braze composition is then applied over the initial layer by cold-spraying. The braze composition and components are then heated, so as to form an active braze joint between them. A method of sealing an open region of a sodium metal halide-based battery is also disclosed, using the brazing technique described herein to form braze joints that seal various components in the battery cells, such as metallic rings and ceramic collar structures.
Abstract:
The present application provides for metal rings and ceramic collars for active brazing in sodium-based thermal batteries. The metal rings may be outer and inner Ni rings configured for sealing to an alpha-alumina collar via active brazing for use in NaMx cells. The inner and outer Ni metal rings may be sealed to differing portions of the alpha-alumina collar. The portions of the outer and inner Ni rings active brazed to the alpha-alumina collar may define a tapered thickness that reduces internal stresses at the active brazed joints resulting from differing coefficients of thermal expansion between the Ni metal rings and the alpha-alumina collar. The portions of the outer and inner Ni rings and alpha-alumina collar sealed by active brazing, and thereby the active braze joints themselves, may be oriented to control or dictate the stresses on the joints during use.