Abstract:
A method of producing a catalyst composition is provided, the method comprising mixing (i) a first component comprising a zeolite, and (ii) a second component comprising a homogeneous solid mixture containing at least one catalytic metal and at least one metal inorganic support, wherein the first component and the second component form an intimate mixture, and wherein the homogeneous solid mixture is produced by mixing a reactive solution comprising a precursor of the metal inorganic support and a templating agent with a precursor of the catalyst metal, and calcining the mixture to form the homogeneous solid mixture. The templating agent affects one or more of pore size, pore distribution, pore spacing, or pore dispersity of the metal inorganic support. The pores of the solid mixture produced after calcination may have an average diameter in a range of about 1 nanometer to about 15 nanometers.
Abstract:
A method of preparing a catalyst composition suitable for removing sulfur from a catalytic reduction system and the catalyst composition prepared by the method are provided. The method of preparation of a catalyst composition, comprises: combining a metal oxide precursor, a catalyst metal precursor and an alkali metal precursor in the presence of a templating agent; hydrolyzing and condensing to form an intermediate product that comprises metal oxide, alkali metal oxide, and catalyst metal; and calcining to form a templated amorphous metal oxide substrate having a plurality of pores wherein the alkali metal oxide and catalyst metal are dispersed in an intermixed form in the metal oxide substrate.
Abstract:
A method provides for operating an engine configured to use a plurality of differing fuels. The method includes determining a fuel combustion ratio of the plurality of the fuels associated with at least one engine cylinder of the engine based at least in part on one or more of a plurality of characteristic profiles. This maintains one or more of a plurality of actual values associated with usage of the plurality of fuels relative to defined corresponding threshold values. The fuel combustion ratio includes a ratio of the plurality of fuels to be delivered to the at least one engine cylinder. A fuel delivery system delivers the plurality of fuels to the at least one engine cylinder based on the fuel combustion ratio.
Abstract:
A system for determining concentration of oxygen in a chemical mixture is presented. The system includes a first sensing device configured to measure the concentration of oxygen in the chemical mixture and generate a first output signal, where the first output signal is indicative if the concentration of oxygen in the chemical mixture and a type of the chemical mixture. Furthermore, the system includes a second sensing device configured to measure the concentration of oxygen in the chemical mixture and generate a second output signal. In addition, the system includes a processing unit operatively coupled to the first sensing device and the second sensing device and configured to determine the concentration of oxygen in the chemical mixture based on the first output signal, the second output signal, or both the first output signal and the second output signal based on a type of the chemical mixture.
Abstract:
Methods for preparing ceramic matrix composites using melt infiltration and chemical vapor infiltration are provided as well as the resulting ceramic matrix composites. The methods and products include the incorporation of sacrificial fibers to provide improved infiltration of the fluid infiltrant. The sacrificial fibers are removed, such as decomposed during pyrolysis, resulting in the formation of regular and elongate channels throughout the ceramic matrix composite. Infiltration of the fluid infiltrant can then take place using the elongate channels resulting in improved density and an improved ceramic matrix composite product.
Abstract:
Embodiments of methods and systems related to operating a mobile asset are provided. In one example, a method for operating a mobile asset includes supplying an engine with a fuel controller a first amount of a first fuel and a second amount of a second fuel and combusting the first fuel and the second fuel at a fuel combustion ratio in at least one cylinder of the engine, the first amount and the second amount being selected based on route information for a route along which the mobile asset is operable to travel and a projected exhaustion of the first fuel that does not precede a projected exhaustion of the second fuel, wherein the mobile asset is unable to operate with the second fuel alone.
Abstract:
A system and a method of operating the system are presented. The system includes a first sensor, a second sensor and a catalyst. The catalyst is located between the first sensor and the second sensor in the path of an exhaust stream from an engine. The first sensor and the second sensors include noble metal electrodes, and are configured to measure concentration of a gaseous species and produce first and second sensor signals respectively. The system further includes a sulfur detector that is configured to receive the first and second signals, and configured to determine a sulfur concentration in the exhaust stream with a lambda value less than 1. The sulfur detector is configured to detect the concentration of sulfur by performing a calculation involving the first and second sensor signals; and by producing an output signal based on the determined sulfur concentration.
Abstract:
A system includes one or more processors configured to be operably coupled to a vehicle system configured to travel along a route during a trip. The vehicle system has a vehicle particulate filter (VPF) disposed within an exhaust passage of the vehicle system. The one or more processors are configured to determine, based on trip information about the trip of the vehicle system, one or more regeneration-incompatible (RI) portions of the trip. The RI portions are associated with operating conditions of the vehicle system that are unsuitable for contemporaneous active regeneration of the VPF. The one or more processors are further configured to schedule an active regeneration (AR) event for the vehicle system based on the one or more RI portions of the trip. The AR event occurs during a regeneration portion of the trip.
Abstract:
A catalyst system comprising a first catalytic composition comprising a homogeneous solid mixture containing at least one catalytic metal and at least one metal inorganic support. The pores of the solid mixture have an average diameter in a range of about 1 nanometer to about 15 nanometers. The catalytic metal comprises nanocrystals.
Abstract:
A system includes a controller that has a processor configured to receive a first signal from a first oxygen sensor indicative of a first oxygen measurement, wherein the first oxygen sensor is disposed upstream of a catalytic converter system; and to receive a second signal from a second oxygen sensor indicative of a second oxygen measurement, wherein the second oxygen sensor is disposed downstream of the catalytic converter system; and to execute a catalyst estimator system, wherein the catalyst estimator system is configured to derive an oxygen storage estimate based on the first signal, the second signal, and a catalytic converter model. The processor is configured to derive a system oxygen storage setpoint for the catalytic converter system based on the catalytic converter model and the oxygen storage estimate.