Abstract:
A base station for controlling transmission power during the establishment of a communication channel utilizes the reception of a short code during initial power ramp-up. The short code is a sequence for detection by the base station which has a much shorter period than a conventional access code. The ramp-up starts from a power level that is lower than the required power level for detection by the base station. The power of the short code is quickly increased until the signal is detected by the base station. Once the base station detects the short code, it transmits an indication that the short code has been detected.
Abstract:
A subscriber unit (SU) transmitter transmits signals over global and assigned channels to a base station which are initialized at an initial power level and adjusted to a controlled power level in advance of transmitting a communication data signal on an assigned channel to the base station. The power level of the SU transmitter is controlled to adjust the SU transmitter power level in response to power control signals received from the base station. The SU transmitter power level is monitored in advance of transmitting a communication data signal on an assigned channel to the base station. The transmitter is controlled such that transmission of a communication data signal on an assigned channel is blocked if a predetermined power limit is reached before commencing transmission of the communication data signal on the assigned channel.
Abstract:
A spread spectrum code division multiple access communication system has a plurality of traffic channels. A plurality of traffic lights have a red state and a green state. Each traffic light is associated with a traffic channel. The state of each traffic light is based on an availability of that traffic light's associated traffic channel. The base station broadcasts each traffic light over a broadcast channel.
Abstract:
A system for rapidly acquiring a spreading code, used in a code division multiple access (CDMA) system, comprises a generator for generating a first long code and a second long code, with each long code having a length of N chips. The first long code is different from the second long code. A transmitter transmits the first long code and the second long code at a first phase angle and at a second phase angle, respectively, on a carrier signal over a communications channel using radio waves. The first long code and the second long code may be transmitted at an in-phase (I) angle and at a quadrature-phase (Q) angle, respectively, on the carrier signal. From the communications channel, an I acquisition circuit and a Q acquisition circuit may acquire, in parallel, the first long code and the second long code from the I angle and the Q angle, respectively, of the carrier signal by searching, in parallel, N/2 chips of the first long code and the second long code.
Abstract:
A device tracks multipath components of a spread-spectrum signal. The spread-spectrum signal has an associated chip code sequence. The device receives multipath components of the spread-spectrum signal. A first and second plurality of multipath components are despread about a center code phase. The first plurality is a sequence of multipath components prior to the center code phase and the second plurality is a sequence of multipath components after the center code phase. A first and second combined energy is determined from the first and second plurality of multipath components. A tracking delay is calculated based on a difference between the first and the second combined energies. The center code phase is adjusted by said tracking delay.
Abstract:
A CDMA modem includes a modem transmitter having: a code generator which provides an associated pilot code signal and which generates a plurality of message code signals; a spreading circuit which produces a spread-spectrum message signal by combining each of the information signals with a respective one of the message code signals; and a global pilot code generator that provides a global pilot code signal to which the message code signals are synchronized. The CDMA modem also includes a modem receiver having an associated pilot code generator and a group of associated pilot code correlators for correlating code-phase delayed versions of the associated pilot signal with a receive CDM signal to produce a despread associated pilot signal. The code phase of the associated pilot signal is changed responsive to an acquisition signal value until a pilot signal is received. The associated pilot code tracking logic adjusts the associated pilot code signal in phase responsive to the acquisition signal so that the signal power level of the despread associated pilot code signal is maximized. Finally, the CDMA modem receiver includes a group of message signal acquisition circuits, each including a plurality of receive message signal correlators which correlate respective local received message code signal to the CDM signal to produce a respective despread received message signal.
Abstract:
A multiple access, spread-spectrum communication system processes a plurality of information signals received by a Radio Carrier Station (RCS) over telecommunication lines for simultaneous transmission over a radio frequency (RF) channel as a code-division-multiplexed (CDM) signal to a group of Subscriber Units (SUs). The RCS receives a call request signal that corresponds to a telecommunication line information signal, and a user identification signal that identifies a user to receive the call. The RCS includes a plurality of Code Division Multiple Access (CDMA) modems, one of which provides a global pilot code signal. The modems provide message code signals synchronized to the global pilot signal. Each modem combines an information signal with a message code signal to provide a CDM processed signal. The RCS includes a system channel controller is coupled to receive a remote call. An RF transmitter is connected to all of the modems to combine the CDM processed signals with the global pilot code signal to generate a CDM signal. The RF transmitter also modulates a carrier signal with the CDM signal and transmits the modulated carrier signal through an RF communication channel to the SUs. Each SU includes a CDMA modem which is also synchronized to the global pilot signal. The CDMA modem despreads the CDM signal and provides a despread information signal to the user. The system includes a closed loop power control system for maintaining a minimum system transmit power level for the RCS and the SUs, and system capacity management for maintaining a maximum number of active SUs for improved system performance.
Abstract:
A multiple access, spread-spectrum communication system processes a plurality of information signals received by a Radio Carrier Station (RCS) over telecommunication lines for simultaneous transmission over a radio frequency (RF) channel as a code-division-multiplexed (CDM) signal to a group of Subscriber Units (SUs). The RCS receives a call request signal that corresponds to a telecommunication line information signal, and a user identification signal that identifies a user to receive the call. The RCS includes a plurality of Code Division Multiple Access (CDMA) modems, one of which provides a global pilot code signal. The modems provide message code signals synchronized to the global pilot signal. Each modem combines an information signal with a message code signal to provide a CDM processed signal. The RCS includes a system channel controller is coupled to receive a remote call. An RF transmitter is connected to all of the modems to combine the CDM processed signals with the global pilot code signal to generate a CDM signal. The RF transmitter also modulates a carrier signal with the CDM signal and transmits the modulated carrier signal through an RF communication channel to the SUs. Each SU includes a CDMA modem which is also synchronized to the global pilot signal. The CDMA modem despreads the CDM signal and provides a despread information signal to the user. The system includes a closed loop power control system for maintaining a minimum system transmit power level for the RCS and the SUs, and system capacity management for maintaining a maximum number of active SUs for improved system performance.
Abstract:
A system for rapidly acquiring a spreading code, used in a code division multiple access (CDMA) system, comprises a generator for generating a first long code and a second long code, with each long code having a length of N chips. The first long code is different from the second long code. A transmitter transmits the first long code and the second long code at a first phase angle and at a second phase angle, respectively, on a carrier signal over a communications channel using radio waves. The first long code and the second long code may be transmitted at an in-phase (I) angle and at a quadrature-phase (Q) angle, respectively, on the carrier signal. From the communications channel, an I acquisition circuit and a Q acquisition circuit may acquire, in parallel, the first long code and the second long code from the I angle and the Q angle, respectively, of the carrier signal by searching, in parallel, N/2 chips of the first long code and the second long code.
Abstract:
A spread spectrum system having an assignor, a spread-spectrum processor and a transmitter. The assignor assigns each arriving information signal to a message-code signal. Each message-code signal is different then other message-code signals. The spread-spectrum processor generates a pilot code signal and processes the information signals with the message-code signals to generate spread-spectrum process-message signals synchronized to the pilot-code signal. A transmitter combines the spread-spectrum process-message signals and the pilot-code signal to generate a CDM signal. The transmitter modulates the CDM signal with a carrier signal for transmission over the communications channel.