Abstract:
The inventive concept provides light emitting devices and methods of manufacturing a light emitting device. The light emitting device may include a transparent substrate including a first region and a second region, a first transparent electrode disposed on a first surface of the transparent substrate, a second transparent electrode facing and spaced apart from the first transparent electrode, an organic light emitting layer disposed between the first and second transparent electrodes, an assistant electrode disposed between the first and second transparent electrodes and selectively masking the second region, and a light path changing structure disposed on a second surface of the transparent substrate and selectively masking the second region.
Abstract:
Provided is a method of fabricating an organic scattering layer. The method may include providing a deposition apparatus with a reaction chamber and a source chamber, loading a substrate in the reaction chamber, supplying carrier gas into the source chamber that may be configured to supply an evaporated organic source material into the reaction chamber, a temperature of the carrier gas ranging from 25° C. to 50° C., and spraying the carrier gas and the evaporated organic source material into the reaction chamber through a showerhead to deposit an organic scattering layer on the substrate, the organic scattering layer including organic particles, which may be provided in a molecularized form of the evaporated organic source material, and thereby having an uneven surface.
Abstract:
Provided is a method for fabricating a flexible display device. The method includes attaching a shape memory alloy film memorizing a shape thereof as a curved shape at a shape memory temperature or lower to a flexible substrate at a temperature higher than the shape memory temperature, forming a display device on the flexible substrate, and returning the shape memory alloy to the curved shape to remove the shape memory alloy film from the flexible substrate.
Abstract:
Provided is a method of manufacturing a gradually stretchable substrate. The method includes forming convex regions and concave regions on a top surface of a stretchable substrate by compressing a mold onto the stretchable substrate and forming non-stretchable patterns by filling the concave regions of the stretchable substrate. The stretchable substrate includes a stretchable region defined by the non-stretchable patterns, the non-stretchable patterns have side surfaces in contact with the stretchable region, and the side surfaces of the non-stretchable patterns are formed of protrusions and a non-protrusion between the protrusions repetitively connected to one another.
Abstract:
Disclosed are dual mode display devices and methods of manufacturing the same. The dual mode display device may include a first substrate, a first electrode on the first substrate, a second substrate opposite to the first electrode and the first substrate, a second electrode between the second substrate and the first electrode, a third electrode between the first electrode and the second electrode, an optic switching layer between the first electrode and the third electrode, and an organic light-emitting layer between the second electrode and the third electrode.
Abstract:
Provided is a dual-mode display including a substrate, and a plurality of sub pixels on the substrate. Each of the sub pixels may include an emissive device, a reflective optical filter provided on a surface of the emissive device, and an optical shutter provided on other surface of the emissive device.
Abstract:
Provided is a light source apparatus which include a light emitting unit including a light emitting area of unit of surface, an antenna disposed along the outer periphery so as not to encroach on a light emitting area and a driving unit, and a driving unit processing wireless power received from the antenna and supplying the processed wireless power to the light emitting unit. According to the light source apparatus, miniaturization may be accomplished and a shielding phenomenon of an antenna reception signal caused by the light emitting area may be suppressed.
Abstract:
A method of manufacturing a transparent transistor including a substrate, source and drain electrodes formed on the substrate, each having a multi-layered structure of a lower transparent layer, a metal layer and an upper transparent layer, a channel formed between the source and drain electrodes, and a gate electrode aligned with the channel. The lower transparent layer or the upper transparent layer is formed of a transparent semiconductor layer, which is the same as the channel.
Abstract:
Organic electroluminescent devices are provided. The organic electroluminescent device may includes a first light emitting part including a transparent first electrode, a first organic light emitting layer, and a transparent second electrode which are stacked, and a capping layer stacked on the first light emitting part. The first light emitting part emits light of a first wavelength, and the capping layer reflects the light of the first wavelength and transmits light of a second wavelength. Thus, the lights of the first and second wavelengths are emitted in high efficiency.
Abstract:
Provided is a display device. The display device includes a lower display element where a substrate, a first lower electrode, a liquid crystal part, and a second lower electrode are sequentially stacked, an upper display element stacked vertical to the lower display element, where a first upper electrode, a light emitting part, a second upper electrode, and a protective part are sequentially stacked, and a middle part configured to deliver a driving signal to the lower and upper display elements, between the lower and upper display elements.