Abstract:
Provided is a flexible touch panel. The flexible touch panel includes a first sensor part extending in a first direction on a substrate, a second sensor part extending in a second direction crossing the first direction on the substrate, and a protective layer surrounding the first and second sensor parts, wherein the first sensor part includes first sensor patterns spaced apart from each other in the first direction, a first connection electrode disposed between the first sensor patterns adjacent to each other, and first connection patterns connecting the first connection electrode and the first sensor patterns to each other, wherein each of the first sensor patterns includes first electrode patterns spaced apart from each other in a form of a mesh and first wiring patterns connecting the adjacent first electrode patterns to each other, wherein each of the first wiring patterns and the first connection patterns has a serpentine structure, wherein the first electrode patterns and the first wiring patterns include the same material as each other.
Abstract:
Provided is a method of manufacturing a gradually stretchable substrate. The method includes forming convex regions and concave regions on a top surface of a stretchable substrate by compressing a mold onto the stretchable substrate and forming non-stretchable patterns by filling the concave regions of the stretchable substrate. The stretchable substrate includes a stretchable region defined by the non-stretchable patterns, the non-stretchable patterns have side surfaces in contact with the stretchable region, and the side surfaces of the non-stretchable patterns are formed of protrusions and a non-protrusion between the protrusions repetitively connected to one another.
Abstract:
Provided are stretchable electronics and a method for manufacturing the same. The stretchable electronics may include a substrate, a plurality of electronic elements disposed to be spaced apart from each other on the substrate, and a wire structure disposed on the substrate to connect the plurality of electronic elements to each other. The wire structure may include an insulator extending from one of the electronic elements to the other of the adjacent electronic elements and a metal wire configured to cover a top surface and side surfaces of the insulator. The insulator may include at least one bent part in a plan view.
Abstract:
Provided is a low frequency vibrating actuator device including an actuator configured to generate a vibration by receiving a voltage, a spring structure disposed on the actuator, and a vibrating mass part disposed on the spring structure. Here, the spring structure includes a first thin-film, a first spacer disposed between the first thin-film and the actuator, and a second spacer disposed between the first thin-film and the vibrating mass part. Also, the first spacer and the second spacer are horizontally offset from each other.
Abstract:
Provided is a low frequency vibrating actuator device. The low frequency vibrating actuator device includes a substrate including a pair of connection electrodes, an actuator provided on the pair of connection electrodes to generate vibration, a support provided on the actuator, a vibration membrane provided on the support to vibrate according to the actuator, and a vibrating mass provided on the vibration membrane to vibrate according to the vibration membrane. The actuator includes a plurality of laminated insulating layers and internal electrodes that are alternately laminated between the insulating layers adjacent to each other, and a top surface of the support, which contacts the vibration membrane, has an area that is equal to or less than that of a bottom surface of the support, which contacts the actuator.
Abstract:
Provided is a method of manufacturing an organic light-emitting device including a graphene layer. The method of manufacturing an organic light-emitting device according to the present invention may include providing a graphene donor unit including a patterned graphene layer, providing a device unit, and attaching the graphene layer of the graphene donor unit to an organic part. The device unit may include a substrate, a lower electrode, and the organic part which are sequentially stacked, and the organic part may include a dopant. The graphene donor unit may include the graphene layer, a release layer, and an elastic stamp layer which are sequentially stacked.
Abstract:
Provided are a thin film transistor and a method for manufacturing the same. The thin film transistor manufacturing method includes forming a gate electrode on a substrate, forming an active layer that is adjacent to the gate electrode and includes an oxide semiconductor, forming an oxygen providing layer on the active layer, forming a gate dielectric between the gate electrode and the active layer, forming source and drain electrodes coupled to the active layer, forming a planarizing layer covering the gate electrode and the gate dielectric, forming a hole exposing the active layer, and performing a heat treatment process onto the planarizing layer in an atmosphere of oxygen.
Abstract:
Provided is a vibratory stimulation device including a first substrate, a connection band connected to both sides of the first substrate, and a vibration element array including a plurality of vibration elements provided on the first substrate, wherein each of the vibration elements includes a stand provided on the first substrate, a vibration film provided on the stand and in contact with the stand at an edge, a vibrator provided on an upper or lower surface of the vibration film, and an electrode wire connected to the vibrator, wherein the vibration film includes a material that is more flexible and stretchable than the stand.
Abstract:
Provided is a color changeable device which includes a first substrate and a second substrate that are spaced apart from each other, a first transparent electrode disposed on the first substrate, a second transparent electrode disposed on the second substrate, an electrochromic layer disposed between the first transparent electrode and the second transparent electrode, an organic layer disposed between the first transparent electrode and the electrochromic layer. The organic layer may include a hole injection layer or an electron injection layer. The organic layer may further include a hole transport layer or an electron transport layer.
Abstract:
Provided is a complex display device Including a first substrate and an opposed second substrate, a first electrode, an electrochromic layer, a common electrode, an emission part and a second electrode, laminated between the first substrate and the second substrate one by one, and an organic layer disposed between the first electrode and the electrochromic layer, or between the electrochromic layer and the common electrode. The organic layer of the complex display device may include at least one of a hole injection material, a hole transport material and a mixture thereof, or at least one of an electron injection material, an electron transport material or a mixture thereof.