Abstract:
Provided are a semiconductor device, a display panel, and a display device including the same. The semiconductor device includes a lower electrode on one side of a substrate, a spacer on another side of the substrate, a middle electrode on the spacer, a lower channel layer on portions of a sidewall of the spacer, the middle electrode, and the lower electrode, a lower gate insulating layer on the lower channel layer, a common gate electrode on the gate insulating layer, an upper gate insulating layer on the common gate electrode, an upper electrode on the spacer and the upper gate insulating layer of the middle electrode, an upper channel layer connected to the upper electrode and disposed on a sidewall of the upper gate insulating layer, and a contact electrode connected to a portion of the upper channel layer and passing through the lower gate insulating layer and the upper gate insulating layer outside the common gate electrode so as to be connected to the lower electrode.
Abstract:
Provided is a stretchable display including an elastic body, a light emitting unit on the elastic body, and a wiring unit on the elastic body, wherein the light emitting unit includes a first substrate unit on the elastic body, a buffer layer on the first substrate unit, and a light emitting element on the buffer layer, the wiring unit includes a second substrate unit on the elastic body, a driving element configured to control the light emitting element, a wiring configured to electrically connect the driving element and the light emitting element, and an insulation layer configured to cover the driving element and the wiring, the light emitting unit and the wiring unit have respective corrugation structures, a thickness of the light emitting unit is larger than that of the wiring unit, a modulus of elasticity of the buffer layer is larger than that of the insulation layer, and a modulus of elasticity of the elastic body is smaller than that of the insulation layer.
Abstract:
Provided is an organic light emitting diodes (OLED) and method of manufacturing the OLED. The OLED includes: a substrate; a light scattering layer having an uneven shape on the substrate; a transparent electrode film provided directly on and in contact with the light scattering layer; an organic light emitting layer on the transparent electrode film; and an electrode on the organic light emitting layer. The method of manufacturing the OLED includes: disposing a light scattering layer on a substrate; providing a transparent electrode film on the light scattering layer; and transferring the transparent electrode film to be directly on and in contact with the light scattering layer.
Abstract:
A dual-mode display including a substrate and a multiple sub-pixels on the substrate, in which each sub-pixel includes, a color selection reflector, and an optical shutter disposed on the color selection reflector, and an emissive devised disposed on the shutter, wherein the emissive device includes a cathode and an anode, and the cathode and the anode include a carbon-based material including graphene sheets, graphene flakes, and graphene platelets, and a binary or ternary transparent conductive oxide including indium oxide, tin oxide, and zinc oxide.
Abstract:
Provided is a hybrid light emitting device. The hybrid light emitting device may include the first light emitting part on the substrate, the capping layer, and the second light emitting part. The first light emitting part may emit light having a first wavelength, and the first light emitting part may include a first electrode, an organic emitting layer, and a second electrode sequentially disposed. A second light emitting part may generate light having a second wavelength. A capping layer may be disposed between the organic emitting layer and the second light emitting part. The capping layer may reflect light having the first wavelength and transmit light having the second wavelength.
Abstract:
Provided is a method of fabricating an organic scattering layer. The method may include providing a deposition apparatus with a reaction chamber and a source chamber, loading a substrate in the reaction chamber, supplying carrier gas into the source chamber that may be configured to supply an evaporated organic source material into the reaction chamber, a temperature of the carrier gas ranging from 25° C. to 50° C., and spraying the carrier gas and the evaporated organic source material into the reaction chamber through a showerhead to deposit an organic scattering layer on the substrate, the organic scattering layer including organic particles, which may be provided in a molecularized form of the evaporated organic source material, and thereby having an uneven surface.
Abstract:
Disclosed are organic light emitting devices and methods of fabricating the same. The organic light emitting device may include light scattering parts having irregular island-shapes irregularly arranged. The organic light emitting device may further include a planarization layer, a first electrode, an organic light emitting layer, a second electrode, and an encapsulation layer. The light scattering parts may be formed using an organic solution having a low refractive index to improve light extraction efficiency of the organic light emitting device. Additionally, the light scattering parts of the irregular island-shapes may improve the light extraction efficiency of lights of all wavelengths, so as to be applied to an organic white light emitting device. The light scattering parts of the irregular island-shapes may be formed using the organic solution by a dewetting phenomenon. The light scattering parts may be formed at a temperature of about 250 degrees Celsius or less.
Abstract:
Provided is a Complementary Metal Oxide Semiconductor (CMOS) logic element. The CMOS logic element includes a substrate including a PMOS area, a circuit wiring structure including an insulating layer and a wiring layer alternately stacked on the substrate, wherein the circuit wiring structure includes an NMOS area vertically spaced apart from the PMOS area, a first transistor disposed on the PMOS area, and a second transistor disposed on the NMOS area and complementarily connected to the first transistor, wherein the first transistor includes a first gate electrode, source/drain areas formed on the PMOS area on both sides of the first gate electrode, and a first channel connecting the source and drain areas to each other, wherein the second transistor includes a second gate electrode and a second channel vertically overlapping the second gate electrode, wherein the first channel includes silicon, wherein the second channel includes an oxide semiconductor.
Abstract:
Provided are stretchable electronics and a method for manufacturing the same. The stretchable electronics may include a substrate, a plurality of electronic elements disposed to be spaced apart from each other on the substrate, and a wire structure disposed on the substrate to connect the plurality of electronic elements to each other. The wire structure may include an insulator extending from one of the electronic elements to the other of the adjacent electronic elements and a metal wire configured to cover a top surface and side surfaces of the insulator. The insulator may include at least one bent part in a plan view.
Abstract:
Provided are a method for manufacturing an integrated substrate for an organic light emitting diode, an organic light emitting diode, and a method for manufacturing an organic light emitting diode, wherein the method for manufacturing an organic light emitting diode may include forming a sacrificial layer on a release substrate, forming a first electrode on the sacrificial layer, forming on the first electrode an auxiliary electrode pattern having an opening, forming a buffer layer on the auxiliary electrode pattern and in the opening, providing a substrate on the buffer layer, removing the release substrate and the sacrificial layer to expose a first surface of the first electrode, and laminating an organic light emitting layer and a second electrode on the first surface of the first electrode.