Abstract:
Provided is an image compression device including an object extracting unit configured to perform convolution neural network (CNN) training and identify an object from an image received externally, a parameter adjusting unit configured to adjust a quantization parameter of a region in which the identified object is included in the image on the basis of the identified object, and an image compression unit configured to compress the image on the basis of the adjusted quantization parameter.
Abstract:
Disclosed is a network-on-chip including a first data converter that receives first image data and second image data from at least one image sensor and encodes one image data among the first image data and the second image data, into first data, based on whether the first image data is identical to the second image data and a second data converter that receives non-image data from at least one non-image sensor and encodes the received non-image data into second data. The network-on-chip outputs the first data and the second data to transmit the first data and the second data to an external server at a burst length.
Abstract:
A hybrid communication device, an operation method thereof, and a communication system including the same are provided. The hybrid communication device includes a contact unit that includes an antenna for receiving a first communication signal and an electrode for receiving a second signal, a switch controller that includes a first switch and a second switch and controls the first switch and the second switch based on a change in capacitance of the electrode, and a signal processing unit that receives at least one of the first communication signal and the second communication signal from the contact unit via the first switch and processes the received signal. The first switch is connected to the contact unit, and the signal processing unit is connected to the first switch.
Abstract:
The present disclosure relates to a neuromorphic arithmetic device. The neuromorphic arithmetic device may include first and second synapse circuits, a charging/discharging circuit, a comparator, and a counter. The first synapse circuit may generate a first current by performing a first multiplication operation on a first PWM signal and a first weight, and the second synapse circuit may generate a second current by performing a second multiplication operation on a second PWM signal and a second weight. The charging/discharging circuit may store charges induced by the first current and the second current in a charging period, and may discharge the charges in a discharging period. The comparator may compare a voltage level of the charges discharged in the discharging period and a level of a reference voltage. The counter may count output pulses of an oscillator on the basis of a result of the comparison by the comparator.
Abstract:
The reception device includes a base member, a first electrode, a second electrode, a differential amplifier, and a circuit board. The base member includes a first surface and a second surface. The first electrode is provided on the first surface and configured to receive a reception signal. The second electrode is provided on the second surface and configured to receive a reference voltage. The differential amplifier is configured to amplify a potential difference between the reception signal and the reference voltage. The circuit board is configured to provide a power voltage and a reference ground to the differential amplifier. A distance between the circuit board and the first electrode is smaller than a distance between the circuit board and the second electrode. According to an embodiment of the inventive concept, the amplification performance of the reception device using a human body as a medium is improved.
Abstract:
Provided are an energy harvesting device capable of generating electric energy by effectively obtaining an electromagnetic wave emitted from an indoor lighting device and a power control system of a lighting device capable of performing self-power generation by using the energy harvesting device as a power source. The energy harvesting device using an electromagnetic wave according to an exemplary embodiment of the present disclosure includes: an interface unit made of a conductive material and configured to capture a conductive interference signal transferred through a conductive member of a lighting device; and a rectifier circuit unit configured to rectify the captured conductive interference signal to convert the rectified conductive interference signal to direct current power.
Abstract:
A capsule endoscope image receiver includes a receiving electrode unit that receives first and second differential signals from a capsule endoscope image transmitter through a human body communication channel, an analog amplifying unit that receives the first and second differential signals and outputs first and second amplified differential signals, and a signal restoring unit that receives the first and second amplified differential signals and restores image information. The analog amplifying unit includes a first amplifier that outputs the first amplified differential signal, a second amplifier that outputs the second amplified differential signal, and an input impedance that is connected between a first inverting input terminal of the first amplifier and a second inverting input terminal of the second amplifier and obtains a gain of differential signal amplification in which a high frequency component of the first and second amplified differential signals is greater than a low frequency component.
Abstract:
Disclosed are a human body communication receiver and an operating method thereof, which may effectively remove low frequency noise. The human body communication receiver according to the present disclosure includes a receiving electrode, a virtual electrode, a filter circuit that is connected between the receiving electrode and the virtual electrode, and removes low frequency noise from a signal received through the receiving electrode to generate a high frequency signal, a low frequency reconstruction circuit that is connected to a rear end of the filter circuit and reconstructs a low frequency baseband signal by rectifying the high frequency signal, and an amplifying circuit that is connected to a rear end of the low frequency reconstruction circuit, and amplifies the low frequency baseband signal.
Abstract:
Provided is and electrode selection device communicating with a capsule endoscope. The device includes an analog front end configured to recover first data based on first signals transmitted from the capsule endoscope to a first electrode and a second electrode, recover second data based on second signals transmitted from the capsule endoscope to the first electrode and a third electrode, and recover third data based on third signals transmitted from the capsule endoscope to the second electrode and the third electrode, and a digital receiver configured to calculate a first correlation value between the first and second electrodes, a second correlation value between the first and third electrodes, and a third correlation value between the second and third electrodes based on the first to third data. The digital receiver calculates first to third correlation sums, and selects a receiving electrode pair based on the first to third correlation sums.
Abstract:
A human body communication device includes an electrode, a matching circuit, a switch providing a first path electrically connected to the matching circuit and a second path electrically connected to the matching circuit, a sensor, in a first state, connected to the matching circuit through the switch, outputting a first sensing signal to the matching circuit, and outputting a second sensing signal when a difference between a signal generated from the matching circuit in response to the first sensing signal and the first sensing signal is greater than or equal to a threshold, a transmitter, in a second state, connected to the matching circuit through the switch, and outputting a data signal to the matching circuit, and a controller controlling the switch from the first state to the second state in response to receiving the second sensing signal from the sensor, in the first state.