Abstract:
A low power system on chip for supporting partial clock gating is provided. The system on chip includes a network on chip including a first CG-network interface module, a second CG-network interface module, and a clock gating control module, a first IP block that communicates through the first CG-network interface module, and a second IP block that communicates through the second CG-network interface module. The clock gating control module receives a clock gating request from the first IP block, outputs a communication control signal to the second CG-network interface module in response to the received clock gating request, and performs a clock gating operation for a clock signal in response to the received clock gating request to selectively deliver the clock signal to the second IP block.
Abstract:
Provided is an operating method of a wearable device, the method including setting a threshold voltage when there is not a physical contact of an outsider, measuring an envelope voltage while performing a data communication, determining whether to be the physical contact with the outsider by comparing the threshold voltage with the envelope voltage, and stopping the data communication, when there is the physical contact with the outsider.
Abstract:
Provided is a capsule endoscope. The capsule endoscope includes: an imaging device configured to perform imaging on a digestive tract in vivo to generate an image; an artificial neural network configured to determine whether there is a lesion area in the image; and a transmitter configured to transmit the image based on a determination result of the artificial neural network.
Abstract:
Provided is an operating method of a wearable device, the method including setting a threshold voltage when there is not a physical contact of an outsider, measuring an envelope voltage while performing a data communication, determining whether to be the physical contact with the outsider by comparing the threshold voltage with the envelope voltage, and stopping the data communication, when there is the physical contact with the outsider.
Abstract:
Disclosed herein are an apparatus and method for controlling smart wear. The apparatus for controlling smart wear includes a motion capture unit, an error information unit, a motion estimation unit, and an actuation unit. The motion capture unit captures a motion of a user using sensors included in the smart wear. Then error information unit generates user error information using reference motion information and the results of the motion capture. The motion estimation unit estimates a subsequent motion of the user using the user error information. The actuation unit controls the smart wear of the user in real time using the estimated subsequent motion and the user error information.
Abstract:
An apparatus and method for transmitting data using a human body. The apparatus includes a parallel bit stream generation unit, a frequency selective spreading unit, a matched filter unit, and a transmission filter unit. The parallel bit stream generation unit outputs a parallel bit stream for an input serial bit stream. The frequency selective spreading unit divides the parallel bit stream into a preset number of bit groups, generates a single code vector by combining orthogonal code vectors corresponding to the respective bit groups, and shifts the center frequency of a transmission signal by spreading the single code vector using a frequency shift code. The transmission filter unit meets a transmit mask for the transmission signal.
Abstract:
Disclosed is a network-on-chip including a first data converter that receives first image data and second image data from at least one image sensor and encodes one image data among the first image data and the second image data, into first data, based on whether the first image data is identical to the second image data and a second data converter that receives non-image data from at least one non-image sensor and encodes the received non-image data into second data. The network-on-chip outputs the first data and the second data to transmit the first data and the second data to an external server at a burst length.
Abstract:
A hybrid communication device, an operation method thereof, and a communication system including the same are provided. The hybrid communication device includes a contact unit that includes an antenna for receiving a first communication signal and an electrode for receiving a second signal, a switch controller that includes a first switch and a second switch and controls the first switch and the second switch based on a change in capacitance of the electrode, and a signal processing unit that receives at least one of the first communication signal and the second communication signal from the contact unit via the first switch and processes the received signal. The first switch is connected to the contact unit, and the signal processing unit is connected to the first switch.
Abstract:
The reception device includes a base member, a first electrode, a second electrode, a differential amplifier, and a circuit board. The base member includes a first surface and a second surface. The first electrode is provided on the first surface and configured to receive a reception signal. The second electrode is provided on the second surface and configured to receive a reference voltage. The differential amplifier is configured to amplify a potential difference between the reception signal and the reference voltage. The circuit board is configured to provide a power voltage and a reference ground to the differential amplifier. A distance between the circuit board and the first electrode is smaller than a distance between the circuit board and the second electrode. According to an embodiment of the inventive concept, the amplification performance of the reception device using a human body as a medium is improved.
Abstract:
Provided are an energy harvesting device capable of generating electric energy by effectively obtaining an electromagnetic wave emitted from an indoor lighting device and a power control system of a lighting device capable of performing self-power generation by using the energy harvesting device as a power source. The energy harvesting device using an electromagnetic wave according to an exemplary embodiment of the present disclosure includes: an interface unit made of a conductive material and configured to capture a conductive interference signal transferred through a conductive member of a lighting device; and a rectifier circuit unit configured to rectify the captured conductive interference signal to convert the rectified conductive interference signal to direct current power.