Abstract:
An air conditioner for a vehicle includes a pump that draws and discharges a heat medium, a cooler core that exchanges sensible heat between the heat medium and ventilation air into a vehicle interior to cool and dehumidify the ventilation air, a heat-medium and outside-air heat exchanger that exchanges sensible heat between the heat medium and outside air, a compressor adapted to draw and discharge a refrigerant in a refrigeration cycle, a heat-medium cooling heat exchanger that cools the heat medium by exchanging heat between a low-pressure side refrigerant in the refrigeration cycle and the heat medium, and first and second switching valves that switch between a first dehumidification mode for circulation of the heat medium between the cooler core and the heat-medium cooling heat exchanger and a second dehumidification mode for circulation of the heat medium between the cooler core and the heat-medium and outside-air heat exchanger.
Abstract:
An air conditioner includes: a heat-medium air heat exchanger that exchanges sensible heat between a heat medium having a temperature adjusted by the heat-medium temperature adjuster and ventilation air blowing to a space to be air-conditioned; a heat transfer portion having a flow path through which the heat medium circulates to transfer heat with the heat medium having the temperature adjusted by the heat-medium temperature adjuster; a large-inner-diameter pipe that forms a heat-medium flow path between the heat-medium temperature adjuster and the heat transfer portion; and a small-inner-diameter pipe that forms a heat-medium flow path between the heat-medium temperature adjuster and the heat-medium air heat exchanger. The small-inner-diameter pipe has small inner diameters ϕH and ϕC, compared to the large-inner-diameter pipe.
Abstract:
First circulation portions switch a flow of a heat transfer medium such that one of the heat transfer media for two systems selectively circulates through a radiator flow path or a first bypass flow path. Second circulation portions switch the flow of the heat transfer medium such that the heat transfer media for the two systems selectively circulate with respect to a second flow path group. The first circulation portions and the second circulation portions are adapted to switch the flow of the heat transfer medium so as to form a first circulation circuit for allowing the heat transfer medium to circulate among a first flow path group, the second flow path group, and a first pump, as well as a second circulation circuit for allowing the heat transfer medium to circulate among the first flow path group, the second flow path group, and a second pump.
Abstract:
A power storage device includes a case in which at least one unit cell is housed; a heat exchanger (31) that is provided in a wall surface of the case so as to face both an inside of the case and an outside of the case, and that performs heat exchange between the inside of the case and the outside of the case; and a plurality of dividing members (21, 22) that are arranged in an up-down direction inside the case so as to be opened and closed independently of one another, and that divide a space inside the case into a space in which the at least one unit cell is housed and a space in which the heat exchanger is arranged.
Abstract:
An expansion valve includes: a partition member shaped in a cylindrical tubular form and receiving a rotor; a case placed at an outside of the partition member and having a cylindrical tubular portion coaxial with the partition member; an O-ring placed between the cylindrical tubular portion and the partition member; a bracket having a body-side portion extending in a direction parallel to an axial direction of the partition member and securely fastened to a body, and a case-side portion extending in a direction different from the axial direction and installed to the case; and a fastener member securely fastening the bracket to the body through the body-side portion. The case and the bracket form an enabler structure that is configured to enable movement of the bracket relative to the case in a fastening direction in which the bracket is fastened to the body by the fastener member.
Abstract:
A device temperature regulator includes a forward passage in which a forward flow passage is formed to cause a working fluid to flow to a heat absorber from a heat radiator, and a backward passage in which a backward flow passage is formed to cause the working fluid to flow to the heat radiator from the heat absorber. In addition, the device temperature regulator includes a bubble generator, which generates a bubble in the working fluid collecting in the heat absorber and having a liquid phase, and a controller that causes the bubble generator to generate the bubble in a precondition is satisfied.
Abstract:
A thermal management system for a vehicle includes an engine cooling circuit that causes a heat medium to circulate through an engine, and an engine radiator that exchanges heat between the heat medium in the engine cooling circuit and outside air. The thermal management system for a vehicle further includes a switching device that switches between an independent mode in which the heat medium circulates respectively independently through a cooler cooling circuit and the engine cooling circuit, and a communication mode in which the cooler cooling circuit and the engine cooling circuit communicate with each other to cause the heat medium to flow between a chiller and the engine radiator; and a controller that controls an operation of the switching device to switch to the communication mode when a temperature of the heat medium in the engine cooling circuit is lower than a first heat-medium temperature.
Abstract:
An air conditioner for a vehicle includes a first heat exchanger that exchanges heat between a refrigerant in a refrigeration cycle and a heat medium, a second heat exchanger that exchanges heat between air to be blown into a vehicle interior space and the heat medium, and a casing disposed in the vehicle interior space to form an air passage through which the air flows and to accommodate the second heat exchanger. The first heat exchanger is disposed under the casing, and a partition wall for partitioning an engine room from the vehicle interior space is interposed between the first heat exchanger and the casing.